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Robustness of high-fidelity Rydberg gates with single-site addressability
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Controlled-PHASE (CPHASE) gates can be realized with trapped neutral atoms by making use of the Rydberg
blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however,
is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause
fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences
for the Rydberg CPHASE gate that specifically examines the robustness of the gate fidelity with respect to such
experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic
passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control
theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance
window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in
terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity
should be experimentally feasible, allowing gate fidelities of order 99.90–99.99% to be achievable under realistic
experimental conditions.
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I. INTRODUCTION

Rydberg states of trapped neutral atoms provide an attrac-
tive platform for realizing quantum information processing,
offering a strong interaction between relatively distant and
otherwise noninteracting atoms that may be switched on
and off with focused lasers [1]. Proposals have been made
for quantum gates with both individually addressable and
non-individually-addressable single atom qubits [2] as well as
with atomic ensembles [3,4]. These schemes generally employ
resonant excitation and make use of the Rydberg blockade
to generate controlled-PHASE (CPHASE) relationships between
logical qubit states that are typically defined as hyperfine
states of the ground electronic atomic manifold. Progress in
trapping and manipulating single atoms in dipole traps and
optical tweezers has enabled experimental validation of the
key theoretical concepts of the Rydberg blockade [5,6], as well
as subsequent use of this to generate entanglement between
trapped atoms in these configurations [7,8]. Reference [8] also
demonstrated a low fidelity version of a controlled-NOT (CNOT)
gate based on the Rydberg blockade. Parallel to this, several
groups have developed the capability to form arrays of trapped
atoms in optical lattices that are characterized by single-site
occupancy and addressability [9–15], thereby opening the path
to large-scale quantum information processing with atomic
qubits.

Despite these conceptual and experimental advances, re-
alization of high-fidelity quantum logic gates between such
trapped neutral atoms has remained elusive, due to the
significant challenges involved in coherently controlling and
manipulating optically trapped atoms. Two-qubit gates relying
on controlled use of dipolar interactions between atoms in
Rydberg states have the potential of being fast but are subject
to a number of intrinsic and technical sources of error that
can restrict both the achieved fidelity and the speed of
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operation. An important source of intrinsic error specific to
Rydberg gates is the lifetime of the atoms in the Rydberg
states, while technical errors may derive from a number
of experimental factors, as discussed recently in Ref. [16].
For the non-individually-addressable implementation of the
Rydberg gate protocol in Ref. [2], atomic motion can also
play a significant role in limiting the fidelity [17,18]. The role
of these and other factors limiting gate fidelities have been
studied theoretically for Rydberg gate schemes involving both
analytic pulse sequences [16,19] and, for the nonaddressable
protocol of Ref. [2], numerically optimized pulses [17,18].
These studies indicate that gates with errors of the order of
10−3 might be achieved with suitable choice of atoms and
qubit levels. However, no study of the robustness of two-qubit
gates with respect to errors has been made, although such
robustness with regard to fluctuations of both intrinsic and
technical parameters is a critical desiderata of experimental
studies. In this work we remedy this with a systematic study of
the robustness of both analytic and numerical pulse sequences
with respect to the primary technical fluctuating parame-
ters, namely pulse timing, pulse amplitude, and two-photon
detuning.

Another desiderata for quantum information processing is
the realization of fast gates. While proposals have been made
to mitigate the effects of intrinsic errors in Rydberg gates
using adiabatic passage techniques [20], the resulting pulse
sequences typically result in relatively long gate times of
microseconds or longer [4,21], which is disadvantageous for
quantum computation schemes, since these generally require
large numbers of gates. Prospects for achieving gates on
nanosecond time scales have been reviewed in Ref. [22]. For
the nonaddressable protocol of Ref. [2], optimal control theory
has been used to characterize bounds on the shortest possible
gate time [23], corresponding to a “quantum speed limit” for
performing the gate [24].

The structure of the present work and its major findings
are summarized as follows. Section II presents the atomic
level structure and qubit model, as well as basic components
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of the CPHASE gate implementation with Rydberg states of
individually addressable atoms. For technical reasons [6,7],
the transition to the Rydberg level is a two-photon transition
via an intermediate state. In Sec. III we first analyze the
performance of three forms of analytic pulse sequences. The
first is the original π -2π -π sequence of Ref. [2], where
each pulse consists of a simultaneous pulse pair realizing a
two-photon transition to or via a Rydberg state. The second is
a fully adiabatic version of this, in which each simultaneous
pulse pair is replaced by a STIRAP pulse pair [15], and
the third is a mixed scheme in which only the π pulses are
replaced by STIRAP pulse pairs. These different schemes are
then compared in their robustness with respect to intrinsic
experimental parameters. We find that the mixed scheme
is the most robust of these analytic approaches, due to its
selective use of STIRAP on the control qubit only. However,
all STIRAP-based schemes are found to require either large
pulse amplitudes or exceedingly long pulse times. Section IV
demonstrates the benefits offered by numerical optimal control
calculations in generating pulse sequences. We first determine
the optimal pulses for a given pulse duration using Krotov’s
method [25–27] within a density matrix formulation for the
open quantum system dynamics [28], taking spontaneous
emission into account. Optimization for pulses robust to
fluctuations in pulse amplitude and Rydberg energies (due,
e.g., to stray electric fields) is then made over an ensemble
of Hamiltonians within an experimentally relevant tolerance
window. We find that optimal control yields systematically
higher gate fidelities than all analytic approaches, showing
improvement of an order of magnitude to reach gate errors
of order 10−4 for equivalent gate times. Most importantly,
optimal control can deliver gate performance that is also
extremely robust with respect to experimental fluctuations,
with the gate error staying below or at the order of 10−3

even for large fluctuations, i.e., below the quantum correction
limit [29]. Using optimal control we can also significantly
shorten the total gate duration, to ∼100 ns, approaching
the quantum speed limit for these systems without loss in
either robustness or fidelity. The resulting numerical pulse
spectra are surprisingly simple and allow the error threshold
for fault-tolerant computation to be reached at the price of
a small increase in pulse complexity relative to the analytic
sequences. A key insight that emerges from the optimal
control calculations is that the use of a two-photon Rydberg
excitation, with none of the restrictions on pulse timings
exhibited by the analytic model pulse sequences, introduces
the possibility of a pathway interference in the spectral domain,
which leads to a significant enhancement of the overall gate
fidelities.

II. MODEL

We consider two cesium atoms trapped in an optical lattice
with single-site addressability. The qubit states are encoded
in hyperfine levels of the ground state, |0〉 = |6 2S1/2,F =
3〉, |1〉 = |6 2S1/2,F = 4〉. For practical reasons, the Rydberg
level, here |r〉 = |50D3/2〉, is accessed by a two-photon
transition via an intermediate state, |i〉 = |7P3/2〉. In the basis
{|0〉,|1〉,|i〉,|r〉}, the Hamiltonian for a single atom, using a
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FIG. 1. (Color online) Level scheme for a single atom. The color
scheme given here in the online version, blue (darker) for the lower
transition and red (lighter) for the upper one, is used throughout the
figures of this paper.

two-photon rotating-wave approximation [30], reads

Ĥ1q =

⎛
⎜⎝

0 0 �B(t) 0
0 E1 0 0

�B(t) 0 �1 �R(t)
0 0 �R(t) �2

⎞
⎟⎠ , (1)

where �B(t),�R(t) are the Rabi frequencies of the “blue”
and “red” pulses, �α = 1

2μα
ijE(t), cf. Fig. 1, and �1,�2 are

the one-photon and two-photon detunings. The two atoms
are kept at a distance of 5 μm such that their interaction is
negligible except when both atoms are in the Rydberg state.
The Hamiltonian for the two atoms, including their Rydberg
interaction, is written as

Ĥ2q = Ĥ1q ⊗ 1 + 1 ⊗ Ĥ1q − u|rr〉〈rr| , (2)

with interaction energy u. The parameters are summarized in
Table I.

Rabi frequencies of �B = 171.5 MHz and �R =
148.4 MHz have been implemented for this system and
values up to ∼250 MHz are expected to be experimentally
feasible [31]. Note that we can restrict our model to a single
mJ sublevel of the Rydberg state (e.g., mJ = 5/2) by choice
of laser polarization, such that the shift due to the interaction u

is insensitive to magnetic field [1] and may then be ignored. In
order to clarify the physics of the alternate excitation path to
the excited state, we have approximated the intermediate state
as a single level. In practice, since the alternate excitation path
is approximately resonant with the intermediate state, it would
be desirable to also include details of the intermediate-state
hyperfine structure in the control optimization. This might
affect the optimal laser detuning but will not cause any
qualitative changes in the results obtained here.

The intermediate level undergoes spontaneous decay to the
ground state. Thus, the full dynamics must be described by a

TABLE I. System parameters.

Single-photon detuning �1 = 1.273 GHz
Two-photon detuning �2 = 0 MHz
Qubit energy E1 = 9.100 GHz
Interaction energy u = 57.26 MHz
Intermediate-state lifetime τ = 150.0 ns
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master equation in Lindblad form,

∂

∂t
ρ̂(t) = −i[Ĥ2q(t),ρ̂(t)] + LD(ρ̂(t)) . (3)

LD is the dissipator for the spontaneous decay of each atom,

LD(ρ̂) = 1

τ

∑
i=1,2

(
Âi ρ̂Â†

i − 1

2
{Â†

i Âi ,ρ̂}
)

, (4)

with Â1 = |0〉〈i| ⊗, Â2 = ⊗ |0〉〈i|, and τ the lifetime of
state |i〉.

Resonant excitation of both atoms to the Rydberg state leads
to an acceleration of the atoms towards each other due to the
dependence of the Rydberg interaction strength on interatomic
separation [2]. The minimum gate duration is then determined
either by the inverse of the interaction, u, or by the period of
the atomic motion in the trap [17]. The gate duration may be
limited further by the inverse of the experimentally realizable
Rabi frequencies.

We consider here the Rydberg blockade regime which
avoids resonant excitation into |rr〉. It corresponds to

�eff � u, (5)

where �eff ≈ (�R�B)/(2�1) [30]. The original proposal of
the Rydberg gate [2] in this regime requires the atoms to
be individually addressable and employs a sequence of three
pulses: a π pulse on the left atom, resulting in complete
population transfer from |0〉 to |r〉, followed by a 2π pulse
on the right atom and another π pulse on the left atom. If
the qubits are initially in |00〉, a nonlocal phase is accumulated
during the middle pulse because of the detuning of level |rr〉
due to the interaction, u, and we thus can execute a CPHASE

gate. This is in principle feasible with the experimental setup
of Ref. [10].

We quantify success in terms of the gate error defined as
1 − F , where

F =
∫

|〈� | Ô†Û | �〉|2d� (6)

is the average gate fidelity, Ô is the target CPHASE gate, and Û
is the projection of the time evolution operator onto the logical
subspace (Û is unitary if and only if there is no loss from that
subspace at final time T ). The average fidelity can be written
as [32]

F = 1
20 (| tr[Ô†Û]|2 + tr[Ô†ÛÛ†Ô]) (7)

(assuming two qubits in the normalization), which is directly
amenable to numerical evaluation.

III. ANALYTIC PULSE SEQUENCES

When a resonant two-photon transition is employed via an
intermediate level, the two-level system {|0〉 , |r〉} for one atom
in the original proposal [2] is replaced by {|0〉 , |i〉 , |r〉}. The
π and 2π population flips can then be realized either with two
simultaneous pulses, namely �B connecting |0〉 and |i〉 and
�R connecting |i〉 and |r〉; or via a STIRAP process, where
�R acts as a “Stokes” pulse, preceding but overlapping �B ,
the “pump” pulse. Both methods may be combined in a mixed
scheme, where a STIRAP sequence is used for the π flip
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FIG. 2. (Color online) Three sequential Blackman pulse pairs
implementing a CPHASE gate. The pulses for the transition |0〉 → |i〉
and |i〉 → |r〉 are acting simultaneously with identical shape and
amplitude.

acting on the left atom, while the 2π flip on the right atom is
realized using simultaneous pulses. The pulse schemes should
avoid putting any population in the intermediary state; if this
condition is satisfied there are no relevant dissipative effects
and the dynamics can be described in Hilbert space, using
the time-dependent Schrödinger equation in place of Eq. (3).
The following sections discuss the merits and drawbacks of
all three approaches, and numerically analyze the robustness
with respect to pulse timing, fluctuations of the Rydberg level,
and fluctuations of the pulse amplitude.

A. Sequence of three simultaneous pulse pairs

We first consider the realization of all population transfers
using simultaneous pulse pairs. The pulses are of Blackman
shape,

�(t) = E0

2
[1 − a − cos(2πt/T ) + a cos(4πt/T )], (8)

with a = 0.16 and E0 being the peak amplitude. This pulse
shape is essentially identical to a Gaussian centered at T/2
with a width of σ = T/6, but, unlike the Gaussian, is exactly
zero at t = 0 and t = T . Other pulse shapes are possible.

A pulse sequence that realizes the two π flips on the left
atom and one 2π flip on the right atom is shown in Fig. 2. Due to
the large single-photon detuning of 1.3 GHz, the intermediate
level can be adiabatically eliminated. This places a restriction
on the pulse amplitude,

�j � �1, j = B,R . (9)

The 2π pulse is more stringently restricted by the blockade
condition in Eq. (5). With the pulse duration being inversely
proportional to the pulse amplitude, both effects result in a
quantum speed limit.

Quantitatively, the limitations are illustrated in Fig. 3, which
shows the gate error (black solid line) vs duration of the middle
2π pulse, using a duration of 50 ns for the initial and final
π pulse. The breakdown of adiabatic elimination becomes
apparent in the peak population of the |0i〉 state (dot-dashed
lined), whereas a breaking of the Rydberg blockade is observed
in the peak population in the |rr〉 state (dashed lined). Gate
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FIG. 3. (Color online) Quantum speed limit for the Rydberg gate
using simultaneous Blackman pulse pairs. The time window is only
that of the center 2π pulse in the scheme. As a measure of the
breakdown of the Rydberg blockade, the maximum population in
the |rr〉 state during that pulse is shown, as well as the maximum
population in the |01〉 state, as a measure of the breakdown of the
adiabatic elimination of the intermediate level. Finally, we show
the total gate error obtained when combining the center 2π pulse
of the given duration with two 50-ns π pulses on the left atom.

errors below 10−3 are only reached for pulse durations of
�800 ns. The gate time is dominated by the central 2π pulse,
which must be sufficiently weak to not break the Rydberg
blockade. Already, the pulse amplitude is remarkably close to
the interaction energy, pushing the limits of condition (5). Note
that the choice of identical peak Rabi frequencies for the red
and blue lasers, �B, max = �R, max, is the only ratio possible
to guarantee complete population inversion in a three-level
system using simultaneous pulses when the intermediate level
is adiabatically eliminated [30].

Population and phase dynamics obtained with simultaneous
red and blue pulses are shown in Fig. 4. As described in Sec. II,
the population undergoes a π Rabi cycle on the left atom,
followed by a 2π pulse on the right atom, followed by a π

pulse on the left atom; cf. Figs. 4(a)–4(c). The intermediate
levels (dot-dash-dotted lines) receive almost no population and
thus, for this time scale, spontaneous decay is not an issue. As
can be seen from Fig. 4(f), the nonlocal phase is accumulated in
the |00〉 state entirely during the central 2π pulse. Although the
Rydberg blockade is not broken, and the population remains

in |r0〉, the state accumulates an additional phase due to the
detuned pulse driving the transition out of |r0〉. This additional
phase is critical for the success of the gate.

B. Sequence of STIRAP pulse pairs

STIRAP is a popular scheme to achieve population transfer
in three-level systems, avoiding population in the intermediate
level at all times [33]. It is based on adiabatically following
a dynamic dark state that does not contain an |i〉 component.
In our setup, the scheme for transferring population from |0〉
to |r〉 is realized by first switching on the red laser, acting
as a “Stokes” pulse, followed by the blue laser, acting as the
“pump” pulse. The two pulses must overlap, but the process is
robust with respect to the laser amplitude and the exact overlap
of the pulses, as long as the condition for adiabatic following,
roughly given by [33]

�j�τ 	 10 (j = B,R), (10)

is met, where �τ is the time for which the pulses overlap. Thus,
for short pulses, large amplitudes are required. However, for
a Rydberg gate, the blockade condition, Eq. (5), also needs to
be fulfilled, limiting the maximum Rabi frequency. Therefore
STIRAP can only employ comparatively long pulses for the
center 2π Rabi flip on the right atom.

In order to quantify violation of the blockade condition, we
define the blockade efficiency, B, to be

B = max(P1r ) − 1

2
P1r (T ) −

(
max(Prr ) − 1

2
Prr (T )

)
,

(11)
where T is the total time of the pulse sequence and P1r and Prr

are the populations in |1r〉 and |rr〉, respectively. B takes values
between zero and one, with one corresponding to a perfect
blockade. Both maximum and final-time populations appear
in B because in order to have full Rabi cycling, the Rydberg
level must be fully populated (giving a maximum population
of one) and then fully depopulated (giving a final population
of zero), i.e., considering only the maximum population does
not allow for distinguishing between π and 2π pulses. We
only obtain B = 1 when the population completes a 2π cycle
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FIG. 4. (Color online) Population and phase dynamics using the simultaneous pulses shown in Fig. 2. Since the population in the
intermediary states |1i〉, |i1〉, |i0〉 are effectively zero throughout, there are not included in the phase dynamics in panels (d)–(f).
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FIG. 5. (Color online) Breakdown of the Rydberg blockade for
STIRAP: Only long gate durations allow for amplitudes that are
sufficiently large to ensure adiabaticity in STIRAP while being
small enough not to break the Rydberg blockade (lower panel).The
amplitude of the two central pulse pairs are systematically scanned
while the amplitude of the first and last pulse pairs are kept
constant.

through |1r〉 whenever the system begins in |10〉 but never
reaches |rr〉 whenever the system begins in |00〉. The blockade
condition, Eq. (5), depends on the peak amplitude of the
pulses whereas the adiabaticity condition, Eq. (10), depends on
the pulses’ complete Rabi angle. For short central 2π pulses
the Rabi angle will not be sufficiently large to satisfy the
adiabaticity condition without requiring a peak amplitude so
high that it will break the blockade. This is illustrated in Fig. 5
(top), where for small amplitudes both the maximum and final
|1r〉 populations rise together: The Rabi angle is less than π

(dashed and dotted lines). Then, as the final |1r〉 population
begins to fall such that the adiabaticity condition of STIRAP is
better fulfilled, the blockade is broken, causing the drop in the
blockade efficiency, cf. solid black line, concurrent with a rise
in both the maximum and final |rr〉 populations (long-dashed
and dot-dashed lines). In Fig. 5 (bottom), the maximum and
final |1r〉 populations rise together (dashed and dotted lines),
but |1r〉 is now fully depopulated, thus achieving full Rabi
cycling, before breaking the blockade. This corresponds to
the area where B ≈ 1 in the graph. We do not see a rise in the
maximum and final |rr〉 population until high peak amplitudes
(long dashed and dot-dashed lines).

A corresponding sequence of STIRAP pulse pairs, using
short pulses on the left atom and long pulses on the right atom,
is shown in Fig. 6. In principle, the pulses on the left atom can
be made arbitrarily short, at the expense of extremely large
field amplitudes. Taking into account realistic restrictions on
the available laser power, the gate time will generally become
prohibitively large.

Additionally, since the STIRAP pulses are so robust to
two-photon detuning [34], STIRAP will, to some extent,
resolve the nonresonant Rydberg levels that are not explicitly
considered, leading to unwanted population dynamics. Even
if this population transfer to extraneous levels is invertible, it
will lead to undesired phase accumulation as the higher and
lower energy levels rotate with different frequencies than the
rotating frame.
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FIG. 6. (Color online) A sequence of STIRAP pulse pairs to
implement the Rydberg CPHASE gate. The pulse shape for the “blue”
transition is given by the solid line, the pulse shape for the “red”
transition by the dashed line. While the pulses acting on the left atom
can be made very short (limited effectively by the power of the driving
laser), the pulses acting on the right atom need to be sufficiently long
to avoid breaking the Rydberg blockade.

C. Mixed scheme: STIRAP-π pulses and simultaneous 2π

pulses

The primary drawbacks of the simultaneous pulses are the
unwanted population in the intermediate level for the pulses
acting on the left atom and a relatively large sensitivity of
the pulses to variations in pulse area. On the other hand, the
primary drawback of STIRAP is the breakdown of the Rydberg
blockade, which results from employing an extremely long
pulse acting on the right atom. This issue, however, is not
present when using STIRAP for the pulses acting on the left
atom. We therefore investigate a mixed scheme, consisting
of STIRAP pulses to drive the π rotations on the left atom
and simultaneous pulses to drive the 2π rotation on the right
atom, cf. Fig. 7. By doing so we use each method where
it is most effective. Furthermore, the pulses on the left and
right atoms can be overlapped without any appreciable loss
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FIG. 7. (Color online) Mixed scheme: STIRAP pulse pairs for
robust population transfer on the left atom (solid and dashed line for
“blue” and “red” transition, respectively), and simultaneous pulses
for the 2π rotation of the right atom (identical shape and amplitude
for “red” and “blue” transition).
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in fidelity. This is because the pulses acting on the right atom
only drive significant population transfer during the central
third of the pulses. As long as the left atom is populated
by the time the amplitude of the pulses acting on the right
atom becomes significant, the blockade is still effective. The
two STIRAP pulses acting on the left atom, that bookend the
central pulses acting on the right atom, are moved in towards
the center. In fact the pulses can be compressed quite far:
By overlapping the STIRAP pulses with the central pulses
for 250 ns (see Fig. 7), the gate duration can be reduced
from 1300 to 800 ns. The gate duration in the mixed scheme
is limited by the laser power available for driving the left
atom.

D. Robustness

For all three variants of pulse sequences, the gate fidelity
in an actual experiment will be compromised by noise and
experimental inaccuracies. We consider in the following three
main sources of errors: inaccuracies in timing between the
pulses acting on the left and right qubits, inaccuracies in pulse
amplitudes, and fluctuations of the Rydberg level due to, e.g.,
the presence of dc electric fields [22]. The latter results in
a nonzero two-photon detuning. To analyze the robustness
with respect to all of these fluctuations, we determine the
expectation value of the gate fidelity under the assumption
that the timing offset, the transition dipole, and the two-photon
detuning differ from the optimal values by �time, ��, and �ryd

drawn from a Gaussian distribution centered at 0 of width
σtime, σ�, and σryd, respectively. For the pulse amplitudes, the
variation is given as percentage of the original amplitudes. The
expectation value of the gate fidelity is given by

F̃ (σx) =
∫

1√
2πσ 2

x

e
− �x

2σ2
x F (�x)dx, (12)

with σx = σtime,σ�,σryd, and �x = �time,��,�ryd, and F

given by Eq. (7). Sampling over 1000 variations of each
parameter allows us to evaluate the integral in Eq. (12)
numerically.

Figure 8 shows the resulting expectation value of the gate
fidelity vs standard deviation of the fluctuations in pulse
timings, pulse amplitudes, and energy of the Rydberg level.
The gate is found to be very robust with respect to pulse timings
and fairly robust with respect to amplitudes: Only errors of
more than a few nanoseconds in timing and several percent
in amplitude reduce the gate fidelity appreciably. A larger
sensitivity is found with respect to the position of the Rydberg
level: Fluctuations on the order of 1% of the interaction energy
u = 57 MHz reduce the gate fidelity to around 0.5 even for
the most robust scheme, and even those on the order of 0.1%
of u reduce the fidelity appreciably; cf. top panel of Fig. 8.
This is not surprising, since a “wrong” energy of the Rydberg
level leads to a nonzero two-photon detuning, �2, and thus
affects both the population transfer for the left atom and the
nonlocal phase accumulated during the pulse acting on the
right atom. This additional phase is by assumption unknown
and thus cannot be accounted for. Depending on the choice
of the Rydberg level, the fluctuations of the level energy may
be suppressed down to 100 kHz or less [35]. Gate fidelities of
about 0.98 are then within reach, as shown in the upper panel
of Fig. 8.
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FIG. 8. (Color online) Robustness of the Rydberg gate with
respect to Rydberg level fluctuations (top), amplitude fluctuations
(middle), and fluctuations in the relative timing between pulses acting
on the left and right atoms. All fluctuations are drawn from a Gaussian
distribution of width σryd, σ�, and σtime, respectively. Note that the
(%) in the middle panel refers to the percent by which the each pulse
was uniformly scaled down. For the Rydberg level, σryd = 150 kHz
represents a 0.3% variation of u = 57 MHz.

Though all the schemes behave similarly with respect to
variations in timing, there are significant differences in each
scheme’s robustness to fluctuations in pulse amplitude and
Rydberg level energy. For inaccuracies in pulse amplitude,
cf. Fig. 8 (middle), the fidelity achieved with STIRAP pulses
(dot-dashed line) is far more susceptible to small variations
than both other schemes. This is due to the additional phase
accumulated for STIRAP during the central pulse acting on the
right atom, caused by undesired population entering |ri〉, cf.
Sec. III B. The mixed scheme (dashed line) performs slightly
better than the simultaneous scheme (solid black line) in this
respect, as the robust STIRAP pulses acting on the left atom
can achieve efficient population transfer at a wide variety of
amplitudes. With respect to fluctuations in the energy of the
Rydberg level, in Fig. 8 (top), as a given scheme populates |r0〉
longer, the scheme becomes less robust. When the population
is in the detuned |r0〉 state, it accumulates an undesired phase,
and this, not the loss in population transfer efficiency, is the
primary reason for the drop in fidelity. As a scheme remains in
|r0〉 longer, the time it takes to accumulate this additional phase
increases. The mixed scheme, which overlaps the pulses acting
on the right atom and thus populates |r0〉 for the shortest time
possible, is the most robust to fluctuations in the Rydberg level
energy. This is followed by the simultaneous scheme, which
fully populates |r0〉 for 700 ns, and finally the STIRAP scheme,
which fully populates |r0〉 for 4200 ns. Counterintuitively,
then, the schemes actually are less robust with respect to
variations in Rydberg level energy the longer they become.
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IV. OPTIMAL CONTROL

The use of optimal control theory (OCT) allows us to
obtain nonanalytic pulses that are not bound by conditions
of adiabaticity and that can realize gate times at the quantum
speed limit [17,22,36]. Here, we extend the application of
optimal control to increase the robustness of the pulses with
respect to fluctuations in amplitude and the energy of the
Rydberg level due to external fields. This is achieved by
requiring the gate fidelity, Eq. (7), to be close to one not
only for the ideal Hamiltonian Ĥ0, Eq. (2), but also for an
ensemble of perturbed Hamiltonians {Ĥn}, n = [1,N − 1] that
sample the relevant parameter space of variations. Unlike in
the analytical pulse schemes, the optimized control pulses will
not consist of subpulses but will be completely overlapping.
Therefore, an analysis of the robustness with respect to pulse
timing is not meaningful in this context. Since population
in the intermediate state |i〉 should be avoided, we now
perform the optimization in Liouville space, and include
spontaneous emission for the intermediate level with a lifetime
of 150 ns [37,38]. The optimization functional to be minimized
reads

J = 1 − 1

16N

N−1∑
n=0

16∑
k=1

Re{tr[Ôρ̂k(0)Ô†ρ̂k,n(T )]}

−
4∑

j=1

λj

∫ T

0

[��j (t)]2

S(t)
dt ;

��j (t) = �j (t) − �j,ref(t) . (13)

The first part of J is a final time cost that measures the Hilbert-
Schmidt overlap of the propagated states ρ̂k,n(T ) with the
target states Ôρ̂k(0)Ô†, where Ô is the CPHASE gate, up to a
trivial global phase due to the natural time evolution of the
|1〉 state. The set of ρ̂k is the canonical basis elements of
the two-qubit Liouville space, {|i〉〈j |} ∀i,j ∈ {00,01,10,11}.
The state ρ̂k,n(T ) is the state ρ̂k(0) propagated under the nth
ensemble Hamiltonian Ĥn. In order for a robust gate to be
successfully implemented, the overlap must become maximal
for all of the N ensemble members. The last term in J is
a running cost that is must be added in order to derive the
update equations for the controls, as discussed below. The λj

are arbitrary positive scaling parameters, �j (t) are the four
controls, i.e., the fields of the red and blue lasers for the left
and right atoms, respectively, S(t) is a shape function for ��j

that maintains smooth switch on and switch off of the pulses,
and the �j,ref are a set of reference fields. The gate duration T

is fixed for the optimization but can be systematically varied
in order to determine the quantum speed limit. For numerical
efficiency, the full basis of 16 states can be replaced by just
two density matrices specifically tailored to the optimization
problem, exploiting the fact that we optimize for a diagonal
unitarity and not a general dynamical map [28]. The time-
dependent states ρ̂k,n(t) are determined by the equation of
motion,

∂

∂t
ρ̂k,n(t) = −i[Ĥn(t),ρ̂k,n(t)] + LD(ρ̂k,n(t)), (14)

with ρ̂k,n(t = 0) = ρ̂k(0), and LD according to Eq. (4).

We use the linear version of Krotov’s method [26,27] to
iteratively minimize Eq. (13). Employing the fields from the
previous iteration as the reference fields �j,ref(t) ensures that
the constraint over the field vanishes close to the optimum
such that the value of the functional is dominated by the
actual objective [26]. Then the update equation for each control
becomes [28]

��j (t) = S(t)

λj

N−1∑
n=0

16∑
k=1

Im

{
tr

(
− i σ̂ old

k,n(t)

×
[

∂Ĥn

∂�j

,ρ̂new
k,n (t)

])}
, (15)

with the σ̂ old
k,n(t) being a set of costates backwards propagated

with the pulse from the previous iteration,

dσ̂ k,n(t)

dt
= −i[Ĥn(t),σ̂ k,n(t)] − LD(σ̂ i,n(t)). (16)

Their “initial” condition is determined by the final time
objective,

σ̂ k,n(t = T ) = Ôρ̂k(0)Ô† . (17)

The states ρnew
k,n (t) in Eq. (15) are forward propagated using

the pulse of the current iteration, according to Eq. (14). In the
case of the rotating-wave approximation where the �j (t) are
complex, Eq. (15) is valid for both the real and the imaginary
parts of the pulse. At this point, the role of the parameters
S(t) and λj from Eq. (13) becomes clear: If S(t) ∈ [0,1] is
chosen as a function that smoothly goes to zero at t = 0 and
t = T , then the update will be suppressed there, and thus the
boundary conditions of a smooth switch on and switch off will
be maintained, assuming they are met in the guess pulse. The
scaling factors λj control the overall magnitude of the pulse
update: Values that are too large will change the control fields
only in small steps and cause slow convergence. Values that
are too small may lead to numerical instabilities.

In order to optimize for robustness with respect to both
amplitude fluctuations and fluctuations of the Rydberg level,
we choose an ensemble of N = 24 Hamiltonians, evenly
sampling the values of �ryd between ±300 kHz and variations
of the dipole coupling strength between ±5%. The resulting
pulses and their spectra are shown in Fig. 9. The guess pulses
from which the optimization started are indicated in orange
(light gray); they are inspired by the analytic scheme of the
previous section, consisting of two π pulses on the left atom
and simultaneously one 2π pulse on the right atom. The gate
duration was set to T = 800 ns, matching the shortest gate
duration obtained for the analytic schemes in the previous
section. The choice of the guess pulse is arbitrary in principle,
but has significant impact on the convergence speed and the
characteristics of the optimized pulse. Indeed, the optimized
pulse shapes still roughly follow the shapes of the guess pulses.
However, especially for the left atom, there are fast oscillations
present in the optimized pulse shapes. These correspond to
a second laser frequency. As can be seen from the spectra
shown in Fig. 9(c), this second frequency is at +�1 for
the blue pulse and at −�1 for the red pulse. This allows a
pathway interference to be set up in the energy level space,
as follows. Pulses at these additional frequencies are now
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FIG. 9. (Color online) Amplitudes and spectra of pulses opti-
mized with respect to variations in both two-photon detuning and
pulse amplitude, for a gate duration of T = 800 ns. The pulses and
spectra driving the “red” and “blue” transitions are colored as in Fig. 1.
The central peaks in the spectra are truncated to emphasize the side
peaks. In panel (c), the amplitudes reach a value of 2.0 (red pulse)
and 0.8 (blue pulse). In panel (d), the peaks reach 1.4 (red pulse)
and 1.0 (blue pulse). Pulses and spectra are shown in the two-color
rotating frame. The central frequency of zero corresponds to a laser
frequency of the blue pulse that is detuned by �1 with respect to the
|0〉 → |i〉 transition. For the red pulse, it indicates the frequency for
which there is a two-photon resonance with the |0〉 → |r〉 transition.
The frequencies matching ±�1 are indicated by vertical dashed gray
lines. In panels (c) and (d), the left side-peak is for the red laser, the
right side-peak for the blue laser.

two-photon resonant with the |0〉 → |r〉 transition and thereby
introduce a second excitation pathway whose interference with
the primary pathway can be exploited as a control mechanism.
The optimization procedure takes advantage of this mechanism
to enhance the overall gate fidelity by utilizing the interference
between excitation amplitude contributions from these distinct
paths connecting the atomic ground and Rydberg state. We
note that the blue side peak is smaller as a result of the smaller
amplitude of the corresponding laser. Indeed, in the spectra of
the pulses acting on the right atom, cf. Fig. 9(d), the second
frequency is mostly absent, except for the very beginning and
end of the red pulse.

The population induced by the optimized pulses with the
ideal Hamiltonian Ĥ0 is shown in Fig. 10. Even though the
optimized pulses have frequency components that are resonant
with the |0〉 → |i〉 transition, the intermediate level is now
never significantly populated, due to destructive interference
along the two pathways in energy space. Suppression of the
intermediate-state population may be aided by the STIRAP-
like feature of the optimized pulse shape, in Figs. 9(a) and 9(b),
where the red laser (counterintuitively) precedes the blue laser
in the initial depopulation of the |0〉 level of the left atom, and
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FIG. 10. (Color online) Dynamics under the pulses optimized
with respect to fluctuations in both the Rydberg level and pulse
amplitudes, as shown in Fig. 9. The pulses and spectra driving the
“red” and “blue” transitions are colored as in Fig. 1. The intermediate
population in the bottom panel (“int”) is integrated over the states
|0i〉, |i0〉, |ii〉, |ir〉, and |ri〉. The shown dynamics implement the
desired CPASE gate up to a gate error of 1.04 × 10−4. The side-peaks
in panels (c) and (d) show the same behavior as those in Fig. 9.

follows it in the final repopulation. Furthermore, the population
of the |01〉 state stays remarkably constant, despite the rather
large amplitudes of the laser fields in Fig. 9(a). Again, this
is due to the interfering multiple pathways. In contrast, the
dynamics of the |10〉 state is much more straightforward, on
account of the absence of the second laser frequency. The
pulse consists effectively of a single 2π pulse, although not
with full population transfer. The Rydberg blockade is almost
fully maintained, cf. the lack of population in the |rr〉 state in
the bottom panel of Fig. 10. Also, the right atom in the time
evolution of the |00〉 state is almost unaffected by the pulse on
the right atom, resulting in very similar population dynamics
for the |00〉 and |01〉 states.

Optimal control also holds the promise of finding pulses
approaching the quantum speed limit. With numerical opti-
mization, we can find solutions with gate durations far below
T = 800 ns required for the analytic schemes, although very
short pulses may require unfeasibly large pulse amplitudes.
The pulses and spectra resulting from an optimization for
T = 100 ns are shown in Fig. 11. The pulses are optimized for
robustness, using the same ensemble of Hamiltonians as for the
T = 800 ns pulses. The pulse shapes again follow the features
of the guess pulse, and are only slightly more complex than
those for 800 ns in Fig. 9. The spectra in Figs. 11(c) and 11(d)
reveal that a similar pathway interference mechanism as seen in
the optimized T = 800 ns pulse sequences operates, realized
by the additional frequencies at ±�1. The most significant
difference from Fig. 9 is that now the additional frequencies
are present for both the left and the right atoms throughout
the entire gate duration. As a result of the shorter time

032329-8



ROBUSTNESS OF HIGH-FIDELITY RYDBERG GATES . . . PHYSICAL REVIEW A 90, 032329 (2014)

0
50

100
150
200
250
300

0 20 40 60 80 100
time ( ns )

0
50

100
150
200
250
300

am
pl

it
ud

e 
( 

M
H

z 
)

0
0.2
0.4
0.6
0.8

1

-1500 -1000 -500 0 500 1000 1500
frequency ( MHz )

0
0.2
0.4
0.6
0.8

1

sp
ec

tr
um

 (
 a

rb
it

ra
ry

 u
ni

ts
 )

left atom

right atom

left atom

right atom

(a)

(b)

(c)

(d)

FIG. 11. (Color online) Amplitudes and spectra of pulses opti-
mized with respect to variations in both two-photon detuning and
pulse amplitude, for a gate duration of T = 100 ns. The spectra are
drawn on the same scale as in Fig. 9, with the central peaks in panel
(c) reaching 2.9 (blue pulse) and 3.0 (red pulse), and 2.5 for both
pulses in panel (d).

window, the peaks in the spectrum are broadened and the
pulse amplitudes are now significantly higher. Generally, the
optimization becomes harder for shorter pulse durations and
the available control mechanism must now be used more
efficiently: This rationalizes the presence of the second laser
frequency throughout all pulses.

The population dynamics, shown in Fig. 12, show some
significant differences from the dynamics shown in Fig. 10, as
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FIG. 12. (Color online) Dynamics under the optimized pulses
shown in Fig. 11. The gate error is 1.92 × 10−4.
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FIG. 13. (Color online) Expectation value of the gate error in the
presence of fluctuations in the |rr〉 state due to dc electric fields
(top), and pulse amplitude fluctuations (bottom). The dashed curve
shows the most robust analytical pulse; cf. the dashed curve in Fig. 8.
The solid yellow (light gray) and blue (dark gray) lines are for the
optimized pulses shown in Figs. 9 and 11, respectively. The dotted
line is for a further optimized pulse at T = 800 ns, without any
consideration of limits on the pulse amplitude or complexity. Note that
both panels show the robustness for same set of pulses; i.e., the pulses
were optimized with respect to both variations in the two-photon
detuning and the pulse amplitude.

a result of the increase in laser amplitude. Most importantly, the
Rydberg blockade is now broken, resulting in a significant pop-
ulation ∼0.6 of the |rr〉 state, cf. the purple (gray) curve in the
bottom panel. This nicely illustrates the power of OCT; while
the analytic schemes rely on maintaining the blockade regime,
the optimization has no such restrictions and will exploit any
pathways available in the time evolution generated by the two-
qubit Hamiltonian. There is some minor population ∼0.1 in
the intermediate states during the propagation of the |00〉 state,
cf. the blue (gray) line in the bottom panel of Fig. 12. However,
since the dynamics result from an optimization that explicitly
took into account the spontaneous decay from the intermediate
level, we are guaranteed that the population in this level is
below a threshold value that would affect the gate fidelity.

In Fig. 13, we compare the effect of fluctuations due to
electric fields and pulse amplitude fluctuations on the gate
fidelity for the pulses obtained with OCT, cf. Figs. 9 and 11,
to those for the most robust gates achieved with the analytic
schemes, i.e., the mixed scheme employing STIRAP for the
pulses on the left atom, and simultaneous pulses for the right
atom, cf. Fig. 8. The optimized pulses are significantly more
robust with respect to both sources of error by at least an order
of magnitude, with the gate fidelity staying above 99.9% even
for large variations, whereas for the analytic pulses, it drops
below 97% for fluctuations of the Rydberg level (top panel)
and 95% for amplitude fluctuations (bottom panel). Note that
in contrast to the analytic mixed scheme, the optimized pulses
do not require unfeasibly large pulse amplitudes. In contrast,
the scheme using only simultaneous pulses but more realistic
pulse amplitudes would be even more sensitive—particularly
to fluctuations of the Rydberg level (cf. the drop to 92% gate
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fidelity in the top panel of Fig. 8). The price for this additional
robustness offered by the numerically optimized pulses is a
slightly more complex pulse shape and the presence of a second
frequency.

It is important to note that the solutions provided by OCT
are not unique; the pulses obtained depend on the guess pulses,
the exact choice of optimization functional, and arbitrary
scaling parameters such as the λj in Eq. (13). By tuning these
parameters carefully, the optimization may be steered towards
desired pulse features. It is also possible to add additional
constraints to the optimization functional in order to preselect
optimization pathways [39]. For example, the |rr〉 state could
be defined as a forbidden subspace in order to enforce the
blockade regime. This could be desirable, since the breaking
of the Rydberg blockage can excite the atoms vibrationally,
resulting in a possible increase of gate duration due to the
additional time required to restore the original state of motion.
The vibrational motion was not taken into account in the our
model. It could be included explicitly in the optimization to
determine the speed limit outside of the blockage regime [17].
One could also include spectral constraints to impose a
prespecified pulse bandwidth or suppress undesired frequency
components [39,40]. Optimizing to extremely high fidelities
often leads to very large pulse amplitudes or complex pulse
features that are undesirable from an experimental point of
view. Thus, it is usually best to stop the optimization as soon
as the reached fidelities are “good enough,” as was done for
the optimized pulses shown as solid blue (dark gray) and
yellow (light gray) lines in Fig. 13. In principle, however,
pulses of much higher fidelity and robustness than those shown
here can be found. This is illustrated by the dotted line in
Fig. 13, which shows the result of a further optimization of
the pulse for T = 800 ns. While these pulses achieve a gate
fidelity well above that required for fault-tolerant quantum
computation [29,41,42], the resulting highly optimized pulses
have unfeasibly large pulse amplitudes of 1100 and 330 MHz
for the blue and red lasers, respectively.

V. SUMMARY AND CONCLUSIONS

We have studied high-fidelity controlled-PHASE gates based
on the Rydberg blockade and investigated their robustness with
respect to noise due to stray fields causing fluctuations of the
Rydberg level as well as experimental inaccuracies in pulse
timings and amplitudes using both analytic and numerically
optimized pulses.

When single-site addressability is available, the gate can
be completed by a 2π pulse on the right atom, preceded and
followed by a π pulse on the left atom. Due to the Rydberg
blockade resulting in a detuning of the right atom’s Rydberg
level, a nonlocal phase is picked up. For practical reasons, the
excitation to the Rydberg level uses a two-photon transition;
i.e., each of the three pulses is replaced by a pair of pulses
with different frequencies. The pulse pairs can be chosen to
occur simultaneously or time delayed, the latter mimicking
a STIRAP sequence. For simultaneous pulse pairs, the Rabi
frequency of the red and the blue lasers must be identical
to achieve population inversion [30]. This is not required for
STIRAP. The shortest possible gate duration with analytical
pulse shapes is found for a combination of STIRAP pulses

acting on the left atom and simultaneous pulses acting on
the right atom. The gate duration is limited by the blockade
condition which restricts the peak amplitude of the pulses.
The STIRAP pulses must furthermore fulfill the adiabaticity
condition whereas the peak amplitude of the simultaneous
pulses is restricted by the requirement of adiabatic elimination
of the intermediate level.

The gate duration can be significantly shortened by utilizing
numerical optimal control to determine the two-photon pulse
pairs within this π -2π -π pulse sequence. In this case, neither
the blockade condition nor the adiabaticity condition are
relevant, and the gate duration is limited by the strength of
the interaction between two Rydberg atoms. For an ideal
implementation of the resulting pulse sequences, very high
fidelities beyond the quantum error correction threshold can
be achieved. This is, however, severely compromised when
noise and experimental inaccuracies are taken into account.
Gates consisting of STIRAP pairs for all three pulses are found
to be the most susceptible to noise with amplitude errors of
less than 1%, reducing the fidelity to only 0.8. This surprising
result is explained by the sensitivity of the gate to proper phase
alignment: While STIRAP ensures robust population transfer,
additional corrections are required to compensate undesired
phase evolution [4]. Simultaneous pulses and a combination of
STIRAP and simultaneous pulses are somewhat more robust.
However, also for these pulse sequences, the fidelities are
reduced to below 0.95 for realistic noise levels. Of the three
noise sources considered, fluctuations of the Rydberg level due
to stray fields are the most severe, whereas timing inaccuracies
of the order of 1 ns play almost no role.

In order to identify pulse sequences that are inherently
robust to noise, we employed optimal control theory and
calculated numerically optimized pulses that guarantee a
high gate fidelity within a predefined tolerance window for
fluctuations of the Rydberg level and pulse amplitude. Analysis
of the optimized pulses showed that interference of two distinct
two-photon pathways for the Rydberg excitation emerges
naturally to act as a highly effective control mechanism
for achieving high gate fidelities. For realistic noise levels
we were able to generate pulses that yield gate errors well
below 10−3, with errors below 10−5 being reached when
no limits are placed on pulse amplitudes. We note that
the technique of optimizing over an ensemble of perturbed
Hamiltonians in order to achieve robust pulses is not limited
to the example of Rydberg gates, but is generally applicable
to other systems and optimization problems. For example,
a similar approach has been used in the context of NMR
spectroscopy [43,44].

Our optimized pulses may also point the way for
the construction of improved analytical pulse sequences.
The additional frequencies identified by the optimization are
utilized to build destructive interference in the intermediate
level that is most severely affected by spontaneous decay.
It thus allows for resonant transitions, decreasing the pulse
amplitudes and lifting the requirements due to adiabaticity
and adiabatic elimination.

Optimized pulse sequences are not only more robust but
can also be of much shorter duration. The gate durations
attainable through optimal control are significantly shorter
than those from the best analytic schemes. For both short
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and long gates, the optimized pulses require only one more
frequency, which corresponds to a one-photon detuning that
sets up a pathway interference in the two-photon excitation
of the Rydberg state. The temporal shape of the optimized
pulses is also comparatively simple. Given the well-established
pulse-shaping capabilities for nanosecond pulses [45] and
taking into account also the restriction of feasible pulse
amplitudes, both of which are consistent with the results
presented in this work, we may conclude that optimized pulses
achieving fault-tolerant Rydberg gates in addressable optical
lattices are experimentally realizable with current technology.
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