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Optimizing for an arbitrary perfect entangler. II. Application
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The difficulty of an optimization task in quantum information science depends on the proper mathematical
expression of the physical target. Here we demonstrate the power of optimization functionals targeting an arbitrary
perfect two-qubit entangler, which allow generation of a maximally entangled state from some initial product
state. We show for two quantum information platforms of current interest, i.e., nitrogen vacancy centers in
diamond and superconducting Josephson junctions, that an arbitrary perfect entangler can be reached faster and
with higher fidelity than both specific two-qubit gates and local equivalence classes of two-qubit gates. Our results
are obtained using two independent optimization approaches, underscoring the critical role of the optimization
target.
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I. INTRODUCTION

Quantum optimal control theory [1] is a versatile tool used
to tackle tasks in quantum information science, allowing very
high fidelities to be achieved in both preparation [2–4] and
manipulation [5–9] of states for complex quantum systems.
Recently, the application of quantum optimal control has been
extended to many-body quantum systems [10–14]. Quantum
optimal control represents a mathematical toolbox which
processes as input the desired physical target and constraints,
as well as the quantum system’s equation of motion, to
yield external controls that drive the dynamics towards the
target in the best manner possible. The optimized controls
depend critically on a proper mathematical formulation of
the physical ingredients. For example, it is possible to
obtain controls that are robust with respect to experimentally
unavoidable fluctuations by accounting for these fluctuations
in the optimization [15–17]. Similarly, when treating the
quantum system as open, one can explore the limits on
fidelity imposed by decoherence [6,18–21] or even identify
control mechanisms that rely on the explicit form of coupling
to the environment [22–24]. Quantum optimal control also
allows us to develop time-optimal strategies, resulting in
protocols that perform transformations at the fastest possible
pace compatible with energy and information constraints—the
so-called quantum speed limit (QSL) [25–30].

The fluctuations and coupling to the environment enter
the equations of motion. In contrast, the optimization goal
and additional constraints are expressed in the optimization
functional. The form of this depends on the desired target.
Thus one can target a quantum state-to-state transition [31],
a quantum gate [5], or a certain class of quantum gates [7].
It is also possible to minimize the energy of the quantum

system [11], to maximize entanglement [32], to prescribe
a desired time evolution [33], or to target an unknown
stable and maximally entangled state [34]. Typical constraints
include finite pulse energy [31], finite bandwidth [35,36], and
smoothness of the control [37]. Constraints naturally limit the
resources available for control and thus restrict the search.
This not only slows down convergence of the optimization,
but may also prevent reaching the target with sufficient fidelity
altogether [38,39].

Similarly, formulating the optimization target in an overly
specific way may unnecessarily restrict the flexibility of
optimization. For example, in the circuit model of quantum
computing, the capability to implement an entangling two-
qubit gate is required [40]. This is often taken to be the
controlled-NOT (CNOT) gate, but in fact any gate within the
local equivalence class of CNOT, i.e., all gates that differ
from CNOT only by single-qubit operations, will work equally
well [41]. However, the time evolution of gates in the same
local equivalence class is generated by Hamiltonians which
may be very different. For example, Hamiltonians that are
diagonal in the two-qubit basis are sufficient to generate a
controlled phase gate, which is locally equivalent to CNOT,
whereas the CNOT gate itself requires off-diagonal entangling
terms. Consequently, optimization for the CNOT gate has no
effect if the Hamiltonian is diagonal, yet targeting an arbitrary
gate in the local equivalence class of CNOT with the same
Hamiltonian can be effectively optimized to achieve a higher
fidelity [7]. The corresponding optimization functional in this
situation utilizes the geometric theory of nonlocal two-qubit
operations [41].

For other applications in quantum information science, the
optimization target can be formulated even more generally than
the functional for a gate within a certain local equivalence
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class. For example, entanglement is a fundamental resource
in quantum communication protocols [42]: The capability to
implement an arbitrary perfect entangler (PE), supplemented
by local operations, is sufficient for the preparation of the
two-qubit states needed in such protocols. Perfect entanglers
constitute over 84% of all two-qubit operations [43]. There-
fore, extending the optimization functional targeting a specific
local equivalence class to comprise all perfect entanglers holds
the promise of a significantly more flexible and easier search
than when targeting either a specific entangling gate or its
local equivalence class. This flexibility is crucial when very
high fidelities are required or when optimal control theory
is utilized to identify the fundamental limits for control in a
numerical search.

In the preceding paper [44], two variants of an optimization
functional targeting all two-qubit perfect entanglers have been
developed. Here, we apply these two functionals to two
quantum information platforms that currently enjoy great
popularity due to their promise of control and scalability,
namely, nitrogen vacancy (NV) centers in diamond and
superconducting Josephson junctions. Both of these systems
are candidates for use in hybrid quantum systems that are
designed to provide the interconnect between information
processing and communication platforms.

The two variants of a perfect entanglers functional pre-
sented in [44] differ in the representation of the two-qubit
nonlocality. In particular, one form utilizes the coefficients
c1, c2, c3 of σx ⊗ σx , σy ⊗ σy , σz ⊗ σz in the canonical
parametrization of two-qubit gates, while the other form
uses the so-called local invariants [41]. The latter offer the
advantage that they can be calculated from the time evolution
in a closed analytical form, which is a prerequisite for
optimization algorithms using gradient information [7,45].
The topology underlying the two optimization functionals
is rather different, due to the nonlinear relation between the
coefficients c1, c2, c3 and the local invariants [44]. While the
variant in the c space (the space spanned by the coefficients
c1, c2, c3, usually referred to as the Weyl chamber due to the
symmetries of the c space [41]) is expected to provide for a
more direct approach towards the target, gradient algorithms
can use more information about a given control landscape. In
order to investigate whether and how the topology underlying
the optimization functional influences the final fidelities, we
employ two different optimization methods. The first is the
chopped random basis (CRAB) optimization, which combines
a gradient-free search with a randomized parametrization
of the control [10,13]. The second is Krotov’s method,
which utilizes gradient information and ensures guaranteed
monotonic convergence [45].

The remainder of the paper is organized as follows. We
first present the physical models for three applications, i.e.,
NV centers in diamond and superconducting charge and
transmon qubits, in Sec. II. Section III reviews the CRAB
optimization algorithm utilizing the perfect entanglers func-
tional based on c-space coefficients c1, c2, c3. Optimization
with Krotov’s method, using the second form of the perfect
entanglers functional written in terms of the local invariants,
is presented in Sec. IV. Our numerical optimization results are
discussed in Sec. V for the three models, and we conclude in
Sec. VI.

II. MODELS

An optimization functional that allows for a very flexible
search is only useful when the system dynamics is sufficiently
complex to explore different areas of the search space. In paper
I [44], the two-qubit Hamiltonian

Ĥ =
∑

α=1,2

ωα

2
σ̂ (α)

z + u1(t)
(
σ̂ (1)

x + λσ̂ (2)
x

)
+u2(t)

(
σ̂ (1)

x σ̂ (2)
x + σ̂ (1)

y σ̂ (2)
y

)
, (1)

with σ̂
(j )
i the ith Pauli operator acting on the j th qubit and u(t)

the control field, was shown to allow for a nontrivial search in
the Weyl chamber. The Weyl chamber is the geometric space
spanned by the nonlocal coefficients c1, c2, c3, taking into
account reflection symmetries; see Ref. [41]. Here, we extend
the discussion to specific physical examples, starting with an
NV center in diamond, followed by superconducting transmon
and charge qubits. The Hamiltonians of the latter two can be
related to Eq. (1), although for realistic parameters, additional
levels, beyond the logical two-qubit space, have to be taken
into account.

A. NV +13C center in diamond

For an NV center in diamond, we employ the NV +13 C
model of Refs. [46,47] for the ground 3A state of the NV center
coupled to a 13C nuclear spin. The model comprises the four
states |0〉 = |0〉e|0〉n, |1〉 = |0〉e|1〉n, |2〉 = |1〉e|0〉n, and |3〉 =
|1〉e|1〉n, where the electronic states |0〉e and |1〉e correspond to
the ground ms = 0 level and the degenerate ms = ±1 sublevels
of the S = 1 triplet state of the two unpaired electrons of the
NV center (see Fig. 1). Transitions between the states |2〉 and
|3〉 are driven by a radio-frequency field,

εRF(t) = �RF(t) cos{[ω23 + δRF(t)] t}, (2)

whereas a microwave field,

εMW(t) = �MW(t) cos{[ω02 + δMW(t)] t}, (3)

drives transitions between |0〉 and |2〉, as depicted in Fig. 1.
In Eqs. (2) and (3), ωij denotes the energy difference between
states |i〉 and |j 〉, and δRF(t) and δMW(t) are the detunings
of the fields from resonance. The corresponding frequencies
are given by ω01 = 2 MHz, ω02 = 2.88 GHz, and ω03 =
130 MHz [46]. We consider the case where the radiation fields
are sufficiently close to resonance such that the microwave
field couples only |0〉 and |2〉 and the radio-frequency field

|0 |1

|3
ΩRF

|2

ΩMW

FIG. 1. Level structure for NV +13C center; see text and
Refs. [46,47] for details. The energy levels are not drawn to scale.
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couples only |2〉 to |3〉, i.e., the rotating-wave approximation
holds and all other couplings can be neglected.

In the interaction picture (ω01 = 0) under the rotating-wave
approximation, the corresponding Hamiltonian then reads

ĤNV =

⎛
⎜⎜⎜⎝

0 0 �MW(t)
2 0

0 0 0 0
�MW(t)

2 0 δMW(t) �RF(t)
2

0 0 �RF(t)
2 	(t)

⎞
⎟⎟⎟⎠ , (4)

with 	(t) = δMW(t) − δRF(t). If we tune the radiation fields
onto resonance, δMW(t) ≡ δRF(t) ≡ 0, only two driving terms

are retained in Eq. (4), i.e., Ĥ
	=0
NV = ĤMW + ĤRF with

ĤMW = �MW(t)

4
σ̂ (1)

x ⊗ (
1 + σ̂ z

)(2)
, (5)

ĤRF = �RF(t)

4

(
1 − σ̂ z

)(1) ⊗ σ̂ (2)
x . (6)

For a gate duration of T = 5 μs, typical amplitudes for the
optimized pulses are of the order of �MW/2π = 50 MHz and
�RF/2π = 100 kHz.

The interaction described by Eqs. (5) and (6) is of different
form than Eq. (1), and thus we have to analyze controllability
separately. This is straightforward: Labelling Â1 = σ̂ (1)

x ⊗
(1 + σ̂ z)(2), Â2 = (1 − σ̂ z)(1) ⊗ σ̂ (2)

x , their commutator yields

Â3 = [Â1,Â2] = −σ̂ x σ̂ y − σ̂ y σ̂ x. (7)

The nested commutators read

[Â1,Â3] = −Â2, [Â2,Â3] = Â1. (8)

Therefore, the Lie algebra is closed under just the three
operators Â1, Â2, and Â3. These operators are not linearly
independent (up to local transformations) and correspond to
only two dimensions of the Weyl chamber, specifically the
ground plane.

We also consider the case of a nonzero detuning 	(t) in
Eq. (4). This results in a third control Hamiltonian,

Ĥ	 = diag[0,0,0,	(t)]

= 	(t)

4

(
1 − σ̂ (1)

z − σ̂ (2)
z + σ̂ zσ̂ z

)
. (9)

	(t) is of the order of 1 MHz. This additional term provides
the missing commutators necessary to reach every point in the

Weyl chamber. Both cases, Ĥ
	=0
NV and Ĥ	, allow for a nontrivial

search in the Weyl chamber, making it a suitable candidate for
optimization employing the perfect entanglers functional.

B. Charge qubits with Josephson-junction coupling

As an example relating more directly to Eq. (1), we consider
two superconducting charge qubits coupled via a Josephson
junction [4], as depicted in Fig. 2. The local Hamiltonian reads

Ĥ
loc
C =

∑
i=1,2

∑
ni

[
EC

(
ni − n(i)

g

)2|ni〉〈ni |

− E
(i)
J (t)

2
(|ni〉〈ni + 1| + |ni + 1〉〈ni |)

]
. (10)

ng

EJ EJJ

FIG. 2. (Color online) Setup of the Josephson charge qubits
(green, left and right) coupled by a Josephson junction (blue, middle).
The local charge levels are driven by EJ . The interaction is driven
by EJJ .

We can control the Josephson coupling E
(1)
j (t) = E

(2)
j (t), while

the charging energy EC and the offset charge n(i)
g are fixed. In

order to make the connection to Eq. (1) explicit, we truncate
each anharmonic ladder to two levels,

Ĥ
loc
C,2l =

2∑
i=1

[
EC

(
ng − 1

2

)
σ̂ (i)

z − EJ (t)

2
σ̂ (i)

x

]
, (11)

omitting terms proportional to the identity. As was shown in
paper I [44], only a two-dimensional subsection of the Weyl
chamber can be reached at the degeneracy point, i.e., ng = 1

2 .
Here, as we are more interested in the control problem than
in its possible experimental realization and thus its robustness
against noise, we set ng = 1, lifting the degeneracy between
the qubit levels and ensuring full controllability.

The interaction is described by

ĤJJ = EJJ (t)

2

∑
n1,n2

(|n1,n2 + 1〉〈n1 + 1,n2| + H.c.) (12)

or

ĤJJ,2l = EJJ (t)

4

(
σ̂ (1)

x σ̂ (2)
x + σ̂ (1)

y σ̂ (2)
y

)
, (13)

if truncated to two levels. Typically, EC takes values between
20 and 200 GHz, and EJ /EC is between 0.03 and 0.5.
Both single- and two-qubit gates can be implemented on a
picosecond time scale [48–50]. The two-level truncation of
the Hamiltonian is generally only accurate near the charge
degeneracy point. For the parameters considered here, higher
levels have to be taken into account.

C. Two transmon qubits interacting via a cavity

The transmon qubits [51] are closely related to charge
qubits, but operated in a different parameter regime, EJ � EC .
This makes them significantly less anharmonic than typical
charge qubits, but more robust with respect to charge noise.
The coupling between two transmons is implemented via a
shared transmission line resonator (“cavity”). The energy of
each transmon qubit transition is denoted by ω1, ω2 for the first
(“left”) and second (“right”) transmon, respectively. Higher
levels are given as a Duffing oscillator with anharmonicity α1,
α2. Each qubit couples to the cavity with coupling strength
g1, g2. In the dispersive limit |ωi − ωr | � |gi | (i = 1,2) with
ωr the cavity frequency, the cavity can be eliminated and an
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TABLE I. Parameters for the transmon Hamiltonian given by
Eq. (15).

Left qubit frequency ω1 4.380 GHz
Right qubit frequency ω2 4.614 GHz
Left qubit anharmonicity α1 −210 MHz
Right qubit anharmonicity α2 −215 MHz
Effective qubit-qubit coupling J eff −3.0 MHz
Relative coupling strength λ 1.03

effective two-transmon Hamiltonian is obtained. The coupling
between each transmon and the cavity turns into an effective
qubit-qubit coupling,

J eff ≈ g1g2

(ω1 − ωr )
+ g1g2

(ω2 − ωr )
. (14)

In most current setups, J eff � |ω2 − ω1|, and the two-
transmon Hamiltonian can be approximated as [52]

ĤT ≈
∑
i=1,2

[(
ωi + αi

2

)
b̂
†
i b̂i − αi

2
(b̂

†
i b̂i)

2

]

+ J eff(b̂
†
1b̂2 + b̂1b̂

†
2)

+�(t)(b̂1 + b̂
†
1 + λb̂2 + λb̂

†
2), (15)

where �(t) is the driving field that couples to the cavity. Typical
parameters are listed in Table I. A Hamiltonian of the form of
Eq. (1) is obtained by truncating the higher levels,

ĤT ,2l = ωi

2
σ (i)

z + 2J eff
(
σ̂ (1)

x σ̂ (2)
x + σ̂ (1)

y σ̂ (2)
y

)
+�(t)

(
σ̂ (1)

x + λσ̂ (2)
x

)
. (16)

Finally, notice that in systems B and C, the assumption
that only two-qubit levels are populated leading to Eqs. (13)
and (16) might not hold in general; however, we present it to
make the connection to Eq. (1) and the controllability analysis
of paper I [44] explicit.

III. OPTIMAL CONTROL USING CRAB

A. Perfect entangler functional in c space

A common choice for a fidelity that quantifies whether an
obtained gate U corresponds to the target gate V is [53]

Fsm = 1
4 | tr[V †U ]|2. (17)

In the context of the geometric theory for two-qubit gates,
reviewed in paper I [44], where arbitrary local transformations
are allowed, the generalization of this fidelity can be expressed
through the difference of the Weyl chamber coordinates of the
obtained gate U and the target point,

FLEC(U ) = cos
	c1

2
cos

	c2

2
cos

	c3

2
. (18)

This fidelity can also be used as a functional for optimizing
towards gates of a given local equivalence class, as shown in
the preceding paper. Building on the local equivalence class
functional, a functional FPE for the optimization of an arbitrary
perfect entangler can be derived. In the Weyl chamber, the

perfect entanglers form a polyhedron confined by the three
planes

c1 + c2 = π/2, (19a)

c2 + c3 = π/2, (19b)

c1 − c2 = π/2. (19c)

These planes divide the Weyl chamber into the polyhedron
of perfect entanglers and three corners of nonperfect entan-
glers. Within the perfect entangler polyhedron, the functional
is defined to take the value FPE ≡ 1. Outside of the polyhedron,
the value of FPE depends on the region of the Weyl chamber
that the gate is in,

FPE(U ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos2 cU,1+cU,2− π
2

4 , c1 + c2 � π
2

cos2 cU,2+cU,3− π
2

4 , c2 + c3 � π
2

cos2 cU,1−cU,2− π
2

4 , c1 − c2 � π
2

1 otherwise (inside polyhedron).

(20)

As shown in the preceding paper, both FLEC and FPE are not
only optimization functionals but also have a nonlocal fidelity
interpretation.

Generally, the logical two-qubit subspace is embedded in
a larger Hilbert space, such that while the dynamics in the
total Hilbert space is unitary, the dynamics in the subspace
may not be. In this case, a closest unitary U can be derived
from the nonunitary (projected) gate Ũ : If Ũ has the singular
value decomposition Ũ = V �W †, then the unitary that fulfills
U = arg minu ‖u − Ũ‖ is given by U = V W †. The local
equivalence class and perfect entangler fidelities then become

FLEC(Ũ ) = FLEC(U ) − ||Ũ − U || , (21)

FPE(Ũ ) = FPE(U ) − ||Ũ − U || . (22)

These fidelities can be directly used as optimization function-
als. The optimization target is then to find ci in such a way that
Eqs. (21) and (22) are maximized.

B. CRAB algorithm

The chopped random basis (CRAB) algorithm [10,13] is
an optimal control tool that allows one to optimize quantum
operations in cases where it is either not possible or impractical
to calculate gradients of the optimization functional. In the
present context, it is mathematically infeasible to calculate
gradients of FLEC and FPE as given in Eqs. (21) and (22) with
respect to the states (as needed for the Krotov update formula
in Sec. IV below), since the functionals depend on the states
in a highly nontrivial way.

The central idea of CRAB is the expansion of the control
function into a truncated basis using random basis func-
tions [10,13],

u(t) =
n∑

i=1

cifi(t), (23)

where the set of fi forms the truncated basis. We choose
fi(t) = sin(ωit) with random ωi ∈ [ 2π

T
(i − 0.5), 2π

T
(i + 0.5)].
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The coefficients ci are optimized by a direct search algorithm,
Nelder-Mead downhill simplex in our case.

IV. OPTIMAL CONTROL USING KROTOV’S METHOD

A. Perfect entangler functional in g space

For optimal control approaches utilizing gradient informa-
tion, the capability to take the derivative of the optimization
functional with respect to the unitary U or, equivalently, with
respect to the time-evolved basis states is required. This is not
possible for the functionals in Eqs. (21) and (22). We therefore
use an equivalent functional, based not on the Weyl chamber
coordinates c1, c2, c3, but on the local invariants g1, g2, g3 [44].

An appropriate functional to optimize towards gates in a
local equivalence class is given by [7]

JLI(U ) = (	g1)2 + (	g2)2 + (	g3)2, (24)

where 	gi is the Euclidean distance between local invariant
gi of the obtained unitary U and that of the optimal gate O.
For the perfect entanglers, the functional becomes [44]

D(U ) = g3

√
g2

1 + g2
2 − g1. (25)

Both of these functionals take the value zero if the goal is
reached. They are thus distance measures, as opposed to the
fidelities in Eqs. (21) and (22), and they are not restricted to
lie within the range [0,1].

Again, nonunitarity due to projection onto the logical
subspace must be taken into account. However, the expression
||Ũ − U ||, similarly to the functionals FLEC, FPE used in
Sec. III, cannot easily be differentiated. As an alternative, we
minimize the loss of population tr[Ũ †Ũ ]/4 from the logical
subspace,

JLI(Ũ ) = wJLI(U ) + (w − 1)
(
1 − 1

4 tr[Ũ †Ũ ]
)
, (26)

D(Ũ ) = wD(U ) + (w − 1)
(
1 − 1

4 tr[Ũ †Ũ ]
)
. (27)

In Eqs. (26) and (27), the factor w ∈ [0,1] is used to weight
the relative importance of Weyl-chamber optimization and
unitarity. It can adaptively be changed during the optimization
in order to improve convergence.

B. Krotov’s method

In Krotov’s method, the total functional J must include a
control-dependent running cost in order to derive an update

equation. J takes the form

J = JT [{ϕk(T )}] +
∫ T

0

λa

S(t)
[u(t) − uref (t)]2dt, (28)

where JT is a final-time functional, e.g., Eqs. (26) or (27). The
second term is a constraint on the optimized control field u(t).
Taking the reference field uref(t) to be the field from the previ-
ous iteration ensures that close to the optimum, the functional
is improved only due to changes in the actual target JT [53].

A comprehensive description of Krotov’s method for
quantum control problems is found in Ref. [45]. Here, we
state the control equations for a final-time functional JT that
depends higher than quadratically on the states, linear coupling
to the control and linear equations of motion. In this case, the
update equation for the control at the (i + 1)st iterative step,
u(i+1)(t), is given by

u(i+1)(t)

= uref(t) + S(t)

λ
Im

{
4∑

k=1

〈
χ

(i)
k (t)

∣∣∂Ĥ
∂u

∣∣∣∣
u(i+1)

∣∣ϕ(i+1)
k (t)

〉

+ 1

2
σ (t)

4∑
k=1

〈
	ϕk(t)

∣∣∂Ĥ
∂u

∣∣∣∣
u(i+1)

∣∣ϕ(i+1)
k (t)

〉}
, (29)

with |	ϕk(t)〉 = |ϕ(i+1)
k (t)〉 − |ϕ(i)

k (t)〉 representing the change
in state |ϕk(t)〉. In Eq. (29), S(t) is a shape function to
smoothly switch the control on and off, and λ is a parameter
that determines the step size of the change in the control.
The scalar function σ (t) is constructed to ensure monotonic
convergence. For final-time functionals that depend higher
than quadratically on the states |ϕk(T )〉, linear equations of
motion and linear coupling to the control, it reads [45]

σ (t) = −Ā, (30)

with Ā = max(εA,2A + εA), where εA is a small non-negative
number that can be used to enforce strict inequality in the
second-order optimality condition. The parameter A depends
on the final-time functional. In principle, it is possible to
determine a supremum for A that guarantees convergence.
In practice, one should determine the optimal value for A in
each iteration numerically [45],

A(i+1) =
∑4

k=1[〈χk(T ) | 	ϕk(T )〉 + 〈	ϕk(T ) | χk(T )〉] + JT

({
ϕ

(i+1)
k (T )

}) − JT

({
ϕ

(i)
k (T )

})
∑4

k=1[〈	ϕk(T ) | 	ϕk(T )〉] . (31)

Evaluation of the update equation for the control, given
by Eq. (29), implies forward propagation of the logi-
cal basis states and backward propagation of the ad-
joint states. The forward propagation of the logical ba-
sis uses the new control, as indicated by the superscript

(i + 1),

d

dt

∣∣ϕ(i+1)
k (t)

〉 = − i

�
Ĥ[u(i+1)]

∣∣ϕ(i+1)
k (t)

〉
, (32a)∣∣ϕ(i+1)

k (0)
〉 = |k〉, k = 1, . . . ,4. (32b)
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The adjoint states are propagated backward in time under
the old control u(i),

d

dt

∣∣χ (i)
k (t)

〉 = − i

�
Ĥ

†
[u(i)]

∣∣χ (i)
k (t)

〉
, (33a)

∣∣χ (i)
k (T )

〉 = − ∂JT

∂〈φk|
∣∣∣∣
|ϕ(i)

k (T )〉
, (33b)

for the k = 1 . . . 4 states that constitute the logical two-qubit
basis. Note that it is Eq. (33b) that necessitates a functional that
is differentiable with respect to the states. The initial condition
for the adjoint states is given in terms of the final-time
functional, JT . We use either one of the functionals in Eqs. (26)
and (27).

V. APPLICATIONS

A. Optimization for NV centers in diamond

For a system whose dynamics do not leak out of the
logical subspace, such as NV centers in diamond introduced
in Sec. II A, optimization towards a perfect entangler is a
powerful tool, given that half of all possible two-qubit gates
are perfect entanglers. Since without leakage any control is
guaranteed to yield a fully unitary gate, the likelihood of
finding a perfect entangler already with an arbitrary control
is large, provided the gate duration is sufficiently long.

In Fig. 3, a sampling of all the gates obtained during an
optimization of the Hamiltonian (4) is shown, for two pulses,
�MW(t) and �RF(t) (left) [cf. Eqs. (5) and (6)], as well as
for a third control 	(t) (right) [cf. Eq. (9)]. The gates from
an optimization towards the polyhedron of perfect entanglers,
using the functional of Eq. (22), are indicated by black dots.
The optimization was performed using the CRAB algorithm
and was allowed to continue even after reaching a perfect
entangler. Furthermore, an optimization towards the local
equivalence class of the points P and N (which are corners
of the polyhedron of perfect entanglers—see paper I [44] for
interpretation) using the functional of Eq. (21) encountered the
gates shown by blue and red dots, respectively. In all cases, the
results confirm the predictions of Sec. II A: for two controls,
all gates lie in the ground plane of the Weyl chamber, whereas
for three controls, every part of the Weyl chamber is reached.

Since P and N are not reachable using only two control
fields, the optimization only yields success for the PE func-
tional, within at most two iterations. Nonetheless, the gates
obtained from all optimization targets (that is, PE functional
and the local equivalence classes P and N) sample the entire
reachable region; the black, red (dark gray), and blue (light
gray) points in Fig. 3 (left) each evenly cover the entire ground
plane of the Weyl chamber.

For three controls, the system shows full controllability,
and the gates from different optimization targets cluster in
different regions. The gates from the PE optimization evenly
fill most of the front half of the PE polyhedron, whereas the
local-equivalence-class optimizations cluster in the direction
of their respective target points. In all cases, the desired target
is reached. However, there is a dramatic difference in the effort
required in the different cases. For the perfect entanglers, the
optimization target was reached within usually one or two
optimization steps. In contrast, for the optimization towards
the P and N points, at least several hundred iterations were
necessary.

B. Optimization for Josephson charge qubits

The optimization problem becomes more difficult once the
model accounts for the possibility of leakage out of the logical
subspace, which is the case for superconducting qubits. As
a first example, we optimize the system of coupled charge
qubits described in Sec. II B, using the CRAB algorithm.
For each qubit, six levels were taken into account, and thus
leakage from the logical subspace had to be considered; cf.
Eqs. (21) and (22). First, we consider the case EJJ (t) = EJ (t),
i.e., using only a single control pulse. Figure 4 shows the
optimization results of the perfect entanglers functional for
different values of EC and compares it to optimization towards
a specific perfect entangler equivalence class, for three corners
of the polyhedron, Q, A2, and P . Success is measured by
the error εPE(Ũ ) = 1 − FPE(Ũ ) for optimization towards the
polyhedron of perfect entanglers (black solid line, circles)
and, equivalently, εLEC(Ũ ) = 1 − FLEC(Ũ ) for optimization
towards a local equivalence class. Larger values of EC increase
the spacing between levels and thus make the implementation
of a gate easier as leakage of population to higher levels is
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FIG. 3. (Color online) Gates reached for an NV center in diamond with two control pulses (left) and three control pulses (right) during an
optimization towards a perfect entangler (black) and towards the equivalence class of the points P and N in the Weyl chamber [blue (light
gray) and red (dark gray), respectively].
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FIG. 4. (Color online) Success of optimization for two Josephson
charge qubits coupled by a Josephson junction. Control with one
pulse EJ (t) = EJJ (t) and total time T = 1 ns. The error εPE for
optimization toward the polyhedron of perfect entanglers (PE) is
compared to the error εLEC for optimization towards the local
equivalence classes of different points in the Weyl chamber A2, P ,
and Q.

suppressed. We stress that while for the truncated Hamiltonian
we can show full controllability, this does not clearly imply
full controllability also when additional levels are included.
Furthermore, the choice of specific parameters can make
certain parts of the Weyl chamber harder to reach in the
chosen total time. This is indeed what we see and report
in Fig. 4: the optimization for an arbitrary perfect entangler
significantly outperforms the optimization towards a specific
local equivalence class. Indeed, we find that while Q and
A2 can be reached with an error εLEC < 10−3 and decreasing
with the gate duration (or, equivalently, increasing EC), P

cannot be reached with precision higher than a few percent.
This finding is supported by Fig. 5 that shows the position in
the Weyl chamber of the gates reached during optimization.
Each dot corresponds to a reached gate at final time (if
leakage is present, the closest gate ∈ SU(4) is shown; see
Sec. III). This explains the dot appearing near the point P :
While the projection onto SU(4) gets relatively close to P ,
a loss of population from the logical subspace of 2.1% is

FIG. 5. (Color online) Optimized gates in the Weyl chamber, for
optimization of two coupled charge qubits with EJ (t) = EJJ (t) and
total time T = 1 ns, using the PE functional as well as the local
invariants functional for the points A, P , Q. The end points of the
optimization for the results shown in Fig. 4 are indicated, using the
same color coding [black for PE optimization, green (medium gray)
for optimization towards the A point, blue (dark gray) for P , and
orange (light gray) for Q].
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FIG. 6. (Color online) Same as Fig. 4, but control with two
independent pulses EJ (t) and EJJ (t).

observed, making the overall fidelity low. In contrast, the
population loss for the gates (Q, A2) as well as the perfect
entanglers is less then 0.1%. Interestingly, all optimizations
towards a perfect entangler cluster around the Q point, which
is the point that was reached with highest fidelity by a direct
local-equivalence-class optimization.

Finally, we relax the constraint EJJ (t) = EJ (t), allowing
for two independent pulses: Figure 6 shows the optimization
success of the perfect entanglers functional for different gate
durations, comparing it to optimization towards a given local
equivalence class. Here, we examine four corners of the
polyhedron, namely, Q, A2, P , and also N . As expected,
again the smallest errors, i.e., highest fidelities, are obtained for
perfect entangler optimization. In addition to Q and A2, now P

could also be implemented with high fidelity, but N (data not
included in Fig. 4) remains unreachable. This is also supported
by Fig. 7 that shows the position in the Weyl chamber of
the gates reached during optimization. The obtained results
for two independent pulses suffer from significantly less
loss of population from the logical subspace compared to
optimization with a single pulse. This is the expected behavior
as the system goes from being weakly controllable (the drift
Hamiltonian is needed to counteract leakage) for one control
to being fully controllable for two controls [54]. For the
optimization towards specific points in the Weyl chamber, the
loss was below 0.01%, and for the perfect entanglers, it was
as low as machine precision.

FIG. 7. (Color online) Same as Fig. 5, but control with two pulses
EJ (t) and EJJ (t). Color coding as in Fig. 6.
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FIG. 8. (Color online) Optimized gates in the Weyl chamber, for
two transmon qubits, optimized with Krotov’s method for the perfect
entangler functional in Eq. (27). The point at which each optimization
enters the PE polyhedron, or the end point of the optimization if no
PE can be achieved, is shown by a black dot and labeled with the gate
duration. The entire optimization paths for T = 50 and T = 400 ns
are shown in blue (light gray) and purple (dark gray), respectively,
with the starting points labeled by 50∗ and 400∗.

C. Optimization of transmon qubits

Lastly, for two transmons as described in Sec. II C, we
analyze the performance of the perfect entanglers functional
using Krotov’s method, outlined in Sec. IV. The optimization is
carried out for different gate durations between 25 and 400 ns,
starting from a sine-squared guess pulse of 35 MHz peak
amplitude.

Figure 8 shows the results of the optimization in the Weyl
chamber. The point at which each optimization enters the
perfect entanglers polyhedron is indicated by a black dot and
labeled with the gate duration. For T < 50 ns, no perfect
entangler can be reached—defining heuristically the QSL for
this transformation. In order to illustrate how the optimization
proceeds, the optimization paths for T = 50 ns, i.e., the gate
at the QSL, and a high-fidelity gate (T = 400 ns) are traced in
blue (light gray) and purple (dark gray), respectively. Both op-
timizations start in the W ∗

0 region (near the A1 point). The gate
obtained with the guess pulse for T = 50 ns is significantly
farther away from the surface of the polyhedron of PE than
that for the guess pulse with T = 400 ns. Optimization for
T = 400 ns therefore moves directly towards the W ∗

0 surface
of the PE polyhedron, whereas the optimization for T = 50 ns
enters the ground plane and emerges in the W0 region, before
finally reaching the W0 surface of the polyhedron of perfect
entanglers. The jump from W ∗

0 to W0 is indicated by the arrow.
We find the optimization to enter W0 from W ∗

0 for durations
<100 ns, whereas for longer gate duration, the optimizations
stay within W ∗

0 entirely. The different optimization paths are a
result of the competition between the two objectives—to reach
a perfect entangler and to implement a gate that is unitary in
the logical subspace (the points shown in Fig. 8 are the Weyl
chamber coordinates of the unitary U closest to the actual time
evolution Ũ ). The latter objective is more difficult to realize for
shorter gate durations, resulting in a more indirect approach
to the polyhedron of perfect entanglers than one might expect
when considering that objective alone.
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FIG. 9. (Color online) Comparison of optimization success for
the PE functional compared to the local invariants (LI) functional for
several points in the Weyl chamber. The optimization success using
Krotov’s method is measured in c space, although the optimization
functionals are defined in g space (see text for details). For the LI
optimization, the results are fully converged. For the PE optimization,
the results are converged to a relative change below 10−2 (black solid
curve) and 10−3 (gray double-dash-dotted curve).

Analogously to the study of charge qubit optimization in
Sec. V B, it is instructive to compare the optimization success
of the perfect entangler functional, given by Eq. (27), to that
of the local invariants functional, given by Eq. (26), for a
few select points of the Weyl chamber. This is shown in
Fig. 9. Instead of the optimization functionals (27) and (26),
we plot the gate errors 1 − FLEC(Ũ ) for the local invariants
optimization, and 1 − FPE(Ũ ) for the PE optimization; see
Eqs. (21) and (22).

The results of Fig. 9 show how, for different gate durations,
the gates that are easiest to reach differ. In agreement
with the results of Fig. 8, for durations < 50 ns, the jump
in the optimization error indicates a speed limit. For short gate
durations, 50 � T � 100 ns, optimization towards the point
Q in the Weyl chamber is most successful. This matches
the optimized gates for T � 100 ns in Fig. 8 being near
the Q point. Also, correspondingly, the longer gate durations
end near the N point. The failure to reach the point Q for
longer durations is due to the symmetry structure of the
Weyl chamber. Namely, for the ground plane of the chamber,
there is a mirror axis defined by the line through L and A2,
where mirrored points are in the same local equivalence class.
Both the Q point and the M point have local invariants of
g1 = 1

4 ,g2 = 0,g3 = 1. Since the optimization was performed
in g space, these two points are not distinguishable; indeed, for
long gate durations, the Q optimization successfully reached
the M point.

In comparison with the local invariants optimization, the
perfect entanglers functional shows excellent performance.
It automatically identifies the optimal gate for a given gate
duration and reaches significantly better fidelities. This is due
to the fact that the desired entangling power of U can usually be
obtained in just a few tens of iterations of the algorithm, and the
remainder of the optimization then focuses on improving the
unitarity of the obtained gate Ũ . Most strikingly, we find that
for the optimization towards a specific local equivalence class,
the convergence rate becomes extremely small as the optimum
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is approached. All the results shown in Fig. 9 are converged
to a relative change below 10−4, such that no measurable
improvement can be expected within a reasonable number
of iterations. While in principle (due to the full controllability
of the system) the direct optimizations should yield arbitrarily
small gate errors as long as the gate duration is above the
quantum speed limit, in practice this depends on numerical
parameters such as the weight λa in Krotov’s method and may
take a extremely large number of iterations or stagnate, as
we observe here. The perfect entangler optimization shows
remarkable robustness with respect to this issue. We observed
very little slowdown in convergence. The black curve in Fig. 9
for the PE optimization already yields a significantly smaller
optimization error than any of the LI optimizations, but is only
converged to a relative change of 10−2. Even the curve labeled
PE∗ is only converged to a relative change of 10−3, and thus
the optimization would still yield considerably better results if
it were to be continued.

The values of the optimization error in Fig. 9 of 10−3 or
10−2 should not be understood to indicate a gate error above the
quantum error correction threshold. Whereas the optimization
error relates only to a figure of merit used for optimization,
the relevant physical quantity that would be determined in an
experiment is the average gate fidelity. It can be evaluated
as [55]

Favg = 1

20

4∑
i,j=1

(〈ϕi |Ô†
Û|ϕi〉〈ϕj |Û†

Ô|ϕj 〉

+ tr[Ô|ϕi〉〈ϕi |Ô†
Û|ϕj 〉〈ϕj |Û†

]), (34)

assuming a two-qubit target gate Ô and denoting the logical
basis by {|ϕi〉}. Figure 10 shows the generated entanglement
as measured by the concurrence and the average gate error,
εavg = 1 − Favg, together with the population loss from the
logical subspace. Ô is taken to be the unitary that is closest
to the projection of the realized operation from the full
Hilbert space onto the logical subspace. For T > 50 ns, the
gate errors are at or below 10−4. For shorter gate durations,
insufficient entanglement is generated; cf. blue dashed curve
in Fig. 10. Once T is sufficiently large to generate the
desired entanglement, the only source of error is loss of
population from the logical subspace, shown in Fig. 10 (light
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FIG. 10. (Color online) Analysis of the sources of error for PE of
two transmon qubits: Population loss from the logical subspace (light
red squares), concurrence error of the closest unitary gate U in the
logical subspace (blue circles, dashed line), and average gate error,
εavg = 1 − Favg, with which U is implemented (red circles, solid line).

red squares). This loss does not depend on the choice of the
weight w in Eq. (27). When the gate duration is increased,
optimization yields gates that are exponentially more unitary,
as indicated by the linear decrease of the average gate error
in our semi-log plot, in agreement with recently introduced
error bounds for optimal transformations [30]. The difficulty
to ensure unitarity on the logical subspace is typical for weakly
anharmonic ladders, as found in superconducting transmon or
phase qubits. Optimal control can be successfully employed to
tackle the problem of ensuring unitarity in the logical subspace,
in addition to generating entanglement, as exemplified in
Fig. 10.

VI. CONCLUSIONS

We have employed an optimization functional targeting
an arbitrary perfect entangler to obtain gate implementations
for NV centers in diamond and superconducting Josephson
junctions. For NV centers in diamonds, to a good approxi-
mation, the dynamics is confined to the logical subspace. In
this case, optimization for a perfect entangler turns out to
be trivial. This finding is in striking contrast to optimization
for a specific local equivalence class which requires a large
number of iterations, if it is successful at all. The ease with
which perfect entanglers are identified for perfectly unitary
time evolution can be rationalized by the fact that more than
half of all nonlocal two-qubit gates are perfect entanglers.

When population may leak out of the logical subspace, the
optimization problem becomes more difficult. Our correspond-
ing examples were the anharmonic ladders of superconducting
qubits in the charge and transmon architectures. While an
optimization for a perfect entangler is then no longer trivial,
it converges much faster than an optimization for a local
equivalence class. This is rationalized by the larger flexibility
that a functional offers which allows for more possible
solutions. Larger flexibility implies an easier optimization
problem, which is reflected in better convergence properties
of the algorithm, i.e., optimization is less likely to get stuck,
and better final gate fidelities can be reached. The perfect
entanglers functional is thus a better tool to investigate
the quantum speed limit for perfectly entangling two-qubit
gates, i.e., the minimum time in which a perfectly entangling
gate operation can be performed, than the local invariants
functional.

We find a qualitatively similar performance of two variants
of the perfect entanglers functional, expressed in terms of
the Weyl chamber coordinates and the local invariants. This
is despite the very different topologies connected with each
formulation.

Our results underline the importance of properly expressing
the physical target in an optimization functional. This is
particularly encouraging in view of more complex quantum
systems than those considered here, including models that
explicitly account for decoherence. Such applications require
identification of the unitary that is closest to the actual
dynamical map in order to evaluate the perfect entanglers
functional. This is possible by extending the mathematical
framework developed in Refs. [20,56] and will be the subject
of future work.
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