

Michael Goerz¹, P. Kunz¹, M. Kasevich², V. Malinovsky¹

¹U.S. Army Research Lab, ²Stanford University

APS March Meeting

March 8, 2019

UNCLASSIFIED

Optimal Control for Robust Atomic Fountain Interferometers

10 m atomic fountain at Stanford (Kasevich lab): ultracold ⁸⁷Rb atomic cloud

laser couples between electronic states: absorbs photon momentum

 $\Delta \phi = -2k_{\rm max}gT^2$

Optimal Control for Robust Atomic Fountain Interferometers

10 m atomic fountain at Stanford (Kasevich lab): ultracold ⁸⁷Rb atomic cloud

laser couples between electronic states: absorbs photon momentum

 $\Delta \phi = -2k_{\rm max}gT^2$

Applications:

- inertial navigation
- gravitational sensing
- test of equivalence principle

Optimal Control for Robust Atomic Fountain Interferometers

10 m atomic fountain at Stanford (Kasevich lab): ultracold ⁸⁷Rb atomic cloud

laser couples between electronic states: absorbs photon momentum

 $\Delta \phi = -2k_{\rm max}gT^2$

Kovachi et al. Nature 528, 530 (2015)

rapid adiabatic passage

V. S. Malinovsky and P. R. Berman, Phys. Rev. A 68, 023610 (2003).

rapid adiabatic passage

V. S. Malinovsky and P. R. Berman, Phys. Rev. A 68, 023610 (2003).

Apply optimal control to atom optics pulses

 $\Rightarrow \mathsf{increase} \ \mathsf{fidelity}$

 \Rightarrow robustness against fluctuations

ensemble optimization for robustness

simulate dynamics

numerical optimal control: minimize functional

 $J_{\mathcal{T}} = 1 - ig\langle \Psi(\mathcal{T}) \, | \, \Psi^{ ext{tgt}} ig
angle$

start from guess pulse: improve J_T in every iteration Krotov's method: guaranteed monotonic convergence

ensemble optimization:

- sample space of perturbed Hamiltonians
- optimize over average
- with a single control pulse!

M. H. Goerz et al., Phys. Rev. A 90, 032329 (2014).

Michael Goerz (goerz@stanford.edu)

UNCLASSIFIED

mirror at quasi-adiabatic time scale

mirror at quasi-adiabatic time scale

mirror at quasi-adiabatic time scale

mirror at quasi-adiabatic time scale

mirror at quasi-adiabatic time scale

beamsplitter at quasi-adiabatic time scale

outlook: going to high momentum states

dynamic frame transformation:

outlook: going to high momentum states

dynamic frame transformation:

new: Python package for optimal control

github qucontrol/krotov p	pi v0.3.0 chat on gitter build passing 🐼 build passing coverage 95% License BSD docs passing
Python implementation	of Krotov's method for quantum optimal control.
This implementation fo M. Reich, M. Ndong, an	lows the original implementation in the QDYN Fortran library. The method is described in detail in D d C. P. Koch, J. Chem. Phys. 136, 104103 (2012) (arXiv:1008.5126).
The krotov package i	s built on top of QuTiP.
Development happens	on Github. You can read the full documentation at ReadTheDocs.
If you use the krotov	package in your research, please cite it.

Optimal Control for Robust Atomic Fountain Interferometers

mirror at compressed time scale

beamsplitter at compressed time scale

beamsplitter at compressed time scale

ASSIFIED

beamsplitter at compressed time scale

beamsplitter at compressed time scale

beamsplitter at compressed time scale

