

Optimal pulse schemes for high-precision atom interferometry

Michael Goerz¹, Paul Kunz¹, Mark Kasevich², Vladimir Malinovsky¹

¹U.S. Army Research Lab, ²Stanford University

10 m atomic fountain at Stanford: ultracold ⁸⁷Rb atomic cloud

laser couples between electronic states: absorbs photon momentum

 $\Delta \phi = -2k_{\rm max}gT^2$

Kovachi et al. Nature 528, 530 (2015)

Michael Goerz (goerz@stanford.edu)

UNCLASSIFIED

Army applications: ultra-precise measurement of acceleration / gravity

- inertial navigation: submarines, autonomous vehicles —not jammable!
 - gyroscopes
 - gravity gradient sensors
- weapons system control
- geospatial mapping
- drone or satellite based detection of underground structures

10 m atomic fountain: sensitivity $10^{-13}\ g/\sqrt{Hz}$

factors:

- signal to noise ratio
- large momentum transfer

AOSense (2010) $10^{-6} \text{ g}/\sqrt{\text{Hz}}$

state of the art $10^{-9} \text{ g}/\sqrt{\text{Hz}}$

Optimal pulse schemes for atom interferometry

Apply optimal control to atom optics pulses

 $\Rightarrow \mathsf{increase} \ \mathsf{fidelity}$

 \Rightarrow robustness against fluctuations

train of pulses \Rightarrow rapid adiabatic passage: tune through laser frequency at constant amplitude

t = T

t = 0

relative phase difference:

 $\Delta \phi = -2k_{\rm max}gT^2$

g

t = 2T

- optimal control can compress pulses by order of magnitude while guaranteeing robustness
- Army applications: ultra-precise measurement of acceleration / gravity
 ⇒ inertial navigation, satellite based gravitational sensing