

Michael H. Goerz, Sebastián C. Carrasco, Vladimir S. Malinovsky

DEVCOM Army Research Lab

CQE Workshop on Scalable Quantum Control

August 15, 2022

UNCLASSIFIED

Photoassociation

Michael Goerz У @goerz

- Photoassociation
- Ion transport

Fürst et al. New J. Phys. 16, 075007 (2014)

- Photoassociation
- Ion transport
- BEC wave function splitting

Optimal Control Tasks

- Photoassociation
- Ion transport
- BEC wave function splitting
- Quantum gates

Goerz et al. Phys. Rev. A 90, 032329 (2014)

- Photoassociation
- Ion transport
- BEC wave function splitting
- Quantum gates
 - Rydberg atoms

Goerz et al. EPJ Quantum Tech. 2, 21 (2015) Goerz et al. npj Quantum Information 3, 37 (2017)

- Photoassociation
- Ion transport
- BEC wave function splitting
- Quantum gates
 - Rydberg atoms
 - Superconducting qubits

Goerz, Jacobs. Qu. Sci. Technol. 3, 045005 (2018)

- Photoassociation
- Ion transport
- BEC wave function splitting
- Quantum gates
 - Rydberg atoms
 - Superconducting qubits
- Entanglement in quantum networks

Carrasco et al, Phys. Rev. Applied 17, 064050 (2022)

- Photoassociation
- Ion transport
- BEC wave function splitting
- Quantum gates
 - Rydberg atoms
 - Superconducting qubits
- Entanglement in quantum networks
- Spin-squeezed states

Quantum Control Problem

"Pulse-level" control

- Bunch of states: $\{|\Psi_k(t)\rangle\}$
 - e.g. two-qubit gate: $\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle$
- Hamiltonian(s) with control fields: $\hat{H}_k(\{\epsilon_l(t)\}) \rightarrow \text{time propagation}$
 - assume piecewise-constant: ϵ_{ln} for n'th time interval of l'th control

Functional

$$J(\{\epsilon_{nl}\}) = J_{\mathcal{T}}(\{|\Psi_k(\mathcal{T})\rangle\}) + \int_0^{\mathcal{T}} g_a(\{\epsilon_l(t)\}, t) dt + \int_0^{\mathcal{T}} g_b(\{|\Psi_k(t)\rangle\}, t) dt$$

Gradient-based "open loop" optimization

$$(\nabla J)_{ln} \equiv \frac{\partial J}{\partial \epsilon_{ln}} \qquad \Rightarrow \qquad L-BFGS-B$$

Scalability

Driving cutting-edge quantum technology with optimal control?

Bigger (open) systems — hard numerics

More flexibility — better functionals, novel methods

Efficient Quantum Control

- Get your data structures right
 grid representation (FFT), sparsity
- Get your propagation right
 polynomial expansions, in-place BLAS
- Set up simultaneous "objectives" via states
 parallelization

QDYN

Scalability

Driving cutting-edge quantum technology with optimal control?

Bigger (open) systems — hard numerics

More flexibility — better functionals, novel methods

Automatic Differentiation (AD)

PHYSICAL REVIEW A 95, 042318 (2017)

Speedup for quantum optimal control from automatic differentiation based on graphics processing units

Nelson Leung,^{1,*} Mohamed Abdelhafez,¹ Jens Koch,² and David Schuster¹

PHYSICAL REVIEW A 99, 052327 (2019)

Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation

Mohamed Abdelhafez,^{1,*} David I. Schuster,¹ and Jens Koch²

PHYSICAL REVIEW A 101, 022321 (2020)

Universal gates for protected superconducting qubits using optimal control

Mohamed Abdelhafez[,] Brian Baker[,] András Gyenis[,] Pranav Mundada[,] Andrew A. Houck^{,3} David Schuster,¹ and Jens Koch²

Automatic Differentiation (AD)

forward

backward-mode "adjoint"

$$ar{v}_j \equiv rac{\partial J}{\partial v_j}
onumber \ = \sum_i ar{v}_i rac{\partial v_i}{\partial v_j}$$

sum over all v_i which depend on v_j $J(\epsilon_1, \epsilon_2) = \sin(\epsilon_1) + \epsilon_1 \sqrt{\epsilon_2}$ $J = v_6$ $v_6 = v_3 + v_5$ $v_5 = v_1 v_4$ $v_3 = \sin(v_1)$ $v_4 = \sqrt{v_2}$ $v_2 = \epsilon_2$

Automatic Differentiation (AD)

Fig. 2 in Leung et al. Phys. Rev. A 95, 042318 (2017)

AD Advantages

Arbitrary functionals

μ	Cost-function contribution	$C_{\mu}(\mathbf{u})$
1	Target-gate infidelity	$1 - \operatorname{tr}(K_T^{\dagger}K_N)/D ^2$
2	Target-state infidelity	$1- \langle\Psi_T \Psi_N angle ^2$
3	Control amplitudes	$ {\bf u} ^2$
4	Control variations	$\sum_{j,k} u_{k,j} - u_{k,j-1} ^2$
5	Occupation of forbidden state	$\sum_j \langle \Psi_F \Psi_j angle ^2$
6	Evolution time (target gate)	$1 - \frac{1}{N} \sum_j \operatorname{tr}(K_T^{\dagger} K_j)/D ^2$
7	Evolution time (target state)	$1 - \frac{1}{N} \sum_{j} \langle \Psi_T \Psi_j \rangle ^2$

Table 1 in Leung et al. Phys. Rev. A 95, 042318 (2017)

Arbitrary equations of motion

e.g., quantum trajectories — Abdelhafez et al. Phys. Rev. A 99, 052327 (2019)

GPU support

Quantum Gate Concurrence

Max concurrence that can be generated for a separable input

- $1 c_1, c_2, c_3 \propto \text{eigvals} \left(\hat{\mathsf{U}} \tilde{\mathsf{U}} \right) ; \quad \tilde{\mathsf{U}} = \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right) \hat{\mathsf{U}} \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right)$
- 2 $C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$

Childs et al. Phys. Rev. A 68, 052311 (2003)

Not analytic!

Quantum Gate Concurrence

Max concurrence that can be generated for a separable input

$$1 c_1, c_2, c_3 \propto \text{eigvals} \left(\hat{\mathsf{U}} \tilde{\mathsf{U}} \right) ; \quad \tilde{\mathsf{U}} = \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right) \hat{\mathsf{U}} \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right)$$

2
$$C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$$

Childs et al. Phys. Rev. A 68, 052311 (2003)

Perfect Entanglers Functional

Find a two-qubit gate with maximum entangling power

$$\begin{split} F_{PE} &= \left(\frac{1}{\det U_B}\right) \left(\frac{1}{4} (\operatorname{tr}^2[U_B^T U_B] - \operatorname{tr}[U_B^T U_B U_B^T U_B])\right) \left(\frac{1}{16} \operatorname{Re}^2[\operatorname{tr}[U_B^T U_B]]\right) + \\ &+ \left(\frac{2}{\det U_B}\right) \left(\frac{1}{4} (\operatorname{tr}^2[U_B^T U_B] - \operatorname{tr}[U_B^T U_B U_B^T U_B])\right) \left(\frac{1}{16} \operatorname{Im}^2[\operatorname{tr}[U_B^T U_B]]\right) \\ &\quad \left(\frac{1}{16} \operatorname{Re}[\operatorname{tr}^2[U_B^T U_B]]\right) \end{split}$$
 Watts et

 U_B : projection into logical subspace, in Bell basis

Michael Goerz У @goerz

Watts et al. Phys. Rev. A 91, 062306 (2015) Goerz et al. Phys. Rev. A 91, 062307 (2015)

Quantum Gate Concurrence

Max concurrence that can be generated for a separable input

- $1 c_1, c_2, c_3 \propto \text{eigvals} \left(\hat{\mathsf{U}} \tilde{\mathsf{U}} \right) ; \quad \tilde{\mathsf{U}} = \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right) \hat{\mathsf{U}} \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right)$
- 2 $C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$

Childs et al. Phys. Rev. A 68, 052311 (2003)

To a computer, everything is analytic!

Quantum Gate Concurrence

Max concurrence that can be generated for a separable input

 $I c_1, c_2, c_3 \propto \text{eigvals} \left(\hat{U} \tilde{U} \right) ; \quad \tilde{U} = \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right) \hat{U} \left(\hat{\sigma}_y \otimes \hat{\sigma}_y \right)$

2
$$C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$$

Childs et al. Phys. Rev. A 68, 052311 (2003)

To a computer, everything is analytic!

Quantum Fisher Information

 $F(\hat{\rho}) = \sum_{i \neq j} \frac{2(p_i - p_j)^2}{p_i + p_j} \left| \left\langle \phi_i \right| \hat{\mathsf{S}}_z \left| \phi_j \right\rangle \right|^2$

where p_i , $|\phi_i\rangle$ are eigenvalues / eigenstates of $\hat{
ho}$

- Ma et al.. Phys. Rep. 509, 89 (2011)

AD Compromises

1 Numerical scaling

- AD memory overhead
- computational overhead (at least on CPU)
- 2 Framework limitations
 - Complex numbers?
 - In-place operations?
 - Double-precision?
- 3 Code reuse
 - Re-implement propagation methods?
 - Re-use existing GRAPE implementation?

 $J(\epsilon_1,\epsilon_2)=\sin(\epsilon_1)+\epsilon_1\sqrt{\epsilon_2}$

Semi-Automatic Differentiation

arXiv:2205.15044

Quantum Optimal Control via Semi-Automatic Differentiation

Michael H. Goerz, Sebastián C. Carrasco, and Vladimir S. Malinovsky

DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA

Funding

DEVCOM Army Research Laboratory, Cooperative Agreement Numbers W911NF-16-2-0147, W911NF-21-2-0037; DIRA-TRC No. DTR19-CI-019

arXiv:2205.15044

Semi-Automatic Differentiation

$$J(\xi \varepsilon_{ve} \vec{\beta}) = J_{t}(\xi \tau_{v}(\tau)\vec{\beta}) + \dots$$

$$\forall J = \frac{\partial S\tau}{\partial \varepsilon_{ve}}$$

$$\frac{\partial S\tau}{\partial \varepsilon_{ve}} = 2Re \left[\sum_{v} \frac{\partial S\tau}{\partial (\tau_{v}(\tau))} \cdot \frac{\partial (\tau_{v}(\tau))}{\varepsilon_{ve}} \right]; \quad |\tau_{v}(\tau)\rangle = \frac{\partial J\tau}{\partial (\tau_{v}(\tau))}$$

$$= 2Re \left[\xi \frac{\partial}{\partial \varepsilon_{ve}} < \tau_{v}(\tau) \right] \cdot \tau_{v}(\tau) \cdot J \right]$$

arXiv:2205.15044

Semi-Automatic Differentiation

$$|\mathcal{N}(\tau)\rangle = \frac{\partial \mathcal{N}(\tau)}{\partial \mathcal{N}(\tau)}$$

$$\frac{\partial z_{\tau}}{\partial t} = \frac{z}{z} \frac{\partial z_{\tau}}{\partial u_{in}} | d_i \rangle$$

$$\frac{\partial z_{\tau}}{\partial t} = \frac{z}{z} \frac{\partial z_{\tau}}{\partial u_{in}} | d_i \rangle$$

Michael Goerz У @goerz

)<~+(T)]

Gradient of Time Evolution Operator

$$\begin{pmatrix} \frac{\partial \hat{U}_{n}^{\dagger}}{\partial \epsilon_{n1}} | \chi_{k}(t_{n}) \rangle \\ \vdots \\ \frac{\partial \hat{U}_{n}^{\dagger}}{\partial \epsilon_{nL}} | \chi_{k}(t_{n}) \rangle \\ \hat{U}_{n}^{\dagger} | \chi_{k}(t_{n}) \rangle \end{pmatrix} = \exp \begin{bmatrix} -i \begin{pmatrix} \hat{H}_{n}^{\dagger} & 0 & \dots & 0 & \hat{H}_{n}^{(1)\dagger} \\ 0 & \hat{H}_{n}^{\dagger} & \dots & 0 & \hat{H}_{n}^{(2)\dagger} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \hat{H}_{n}^{\dagger} & \hat{H}_{n}^{(L)\dagger} \\ 0 & 0 & \dots & 0 & \hat{H}_{n}^{\dagger} , \end{pmatrix} dt_{n} \end{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ | \chi_{k}(t_{n}) \rangle \end{pmatrix}$$
$$\hat{U}_{n} = \exp[-i\hat{H}_{n}dt_{n}]; \qquad \hat{H}_{n}^{(I)} = \frac{\partial\hat{H}_{n}}{\partial \epsilon_{I}(t)}$$

- Goodwin, Kuprov, J. Chem. Phys. 143, 084113 (2015)

Generalized GRAPE scheme

GRAPE.jl

JuliaQuantumControl

Zvgote

JuliaQuantumControl

Benchmarks

Michael Goerz 9 @goerz

Conclusion

AD-enhanced optimal control without compromises!

arXiv:2205.15044

- Use optimal data structures
- Use polynomial in-place propagators
- Use semi-AD implementation of GRAPE
- propagation and optimal control are independent
- AD and GPU computing are independent
- Full power of AD with near-zero overhead

Thank you