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Optimizing Robust Quantum Gates
in Open Quantum Systems

Zusammenfassung

Wir befinden uns an der Schwelle einer Revolution zu einer Quanten-
technologie, die nicht nur auf der passiven Nutzung von Quanteneffekten,
sondern auf ihrer aktiven Kontrolle beruht. An vorderster Front beinhaltet
dies die Realisierung eines Quantencomputers. Das Kodieren von Informa-
tionen in Quantenzuständen als “Qubits” erlaubt es, Verschränkung und
Quantensuperposition zu nutzen, um Rechnungen durchzuführen, die auf
einem klassischen Computer unpraktikabel sind. Eine zentrale Schwierigkeit
ist es dabei, Dekohärenz zu vermeiden – der Verlust von Quanteneigen-
schaften aufgrund ungewollter Wechselwirkung mit der Umgebung. Diese
Arbeit thematisiert die Realisierung verschränkender Zwei-Qubit-Gatter,
die sowohl gegenüber Dekohärenz als auch klassischen Störeinflüssen robust
sind. Sie behandelt dabei drei Aspekte: die Nutzung effizienter numerischer
Methoden zur Simulation und optimaler Kontrolle offener und geschlossener
Quantensysteme, die Rolle fortgeschrittener Optimierungsfunktionale zur
Begünstigung von Robustheit, sowie die Anwendung dieser Techniken auf
zwei führende Umsetzungen von Quantencomputern, gefangene Atome und
supraleitende Schaltkreise.

Nach einem Überblick über die theoretischen und numerischen Grund-
lagen beginnt der zentrale Teil dieser Arbeit mit der Idee einer Ensem-
bleoptimierung, um Robustheit sowohl gegenüber klassischen Fluktuationen
als auch Dekohärenz zu erreichen. Für das Beispiel eines kontrollierten
Phasengatters auf gefangenen Rydberg-Atomen wird gezeigt, dass Gat-
ter erreichbar sind, die um mindestens eine Größenordnung robuster sind
als der beste bekannte analytische Ansatz. Darüber hinaus bleibt diese
Robustheit selbst dann erhalten, wenn die Gatterdauer signifikant gegenüber
der kurzmöglichsten Dauer des analytischen Gatters verkürzt wird.

Supraleitenden Schaltkreise sind eine besonders vielversprechende Ar-
chitektur zur Implementierung eines Quantencomputers. Ihre Flexibilität
wird durch Optimierungen sowohl für diagonale als auch nicht-diagonale
Gatter gezeigt. Um Robustheit gegenüber Dekohärenz zu gewährleisten, ist
es essentiell, das Gatter in so kurzer Zeit wie möglich zu realisieren. Das
Erreichen dieses Ziels wird durch die Optimierung hin zu einem beliebigen
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perfekten Verschränker erleichtert, basierend auf einer geometrischen The-
orie der Zwei-Qubit-Gatter. Für das Beispiel supraleitender Qubits wird
gezeigt, dass dieser Ansatz zu kürzeren Gatterzeiten, höheren Fidelitäten,
sowie schnellerer Konvergenz führt, im Vergleich zur Optimierung hin zu
vorausbestimmten, festen Zwei-Qubit-Gattern.

Eine Optimierung im Liouville-Raum zur sauberen Berücksichtigung
von Dekohärenzeffekten ist mit erheblichen numerischen Herausforderungen
verbunden, da die Dimension im Vergleich zum Hilbert-Raum quadratisch
wächst. Es kann allerdings gezeigt werden, dass es für ein unitäres Opti-
mierungsziel ausreichend ist, höchstens drei Zustände anstelle der vollen Ba-
sis des Liouville-Raums zu propagieren. Sowohl für das Beispiel gefangener
Rydberg-Atome also auch für supraleitende Qubits wird die erfolgreiche
Optimierung von Quantengattern gezeigt, mit einem numerischen Aufwand,
der weit unterhalb der bisher angenommenen Untergrenze liegt. Insgesamt
zeigen die Ergebnisse dieser Arbeit zu einem umfassenden Gerüsts zur Opti-
mierung robuster Quantengatter, und bereiten den Weg für die mögliche
Realisierung eines Quantencomputers.
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Optimizing Robust Quantum Gates
in Open Quantum Systems

Abstract

We are currently at the cusp of a revolution in quantum technology that
relies not just on the passive use of quantum effects, but on their active
control. At the forefront of this revolution is the implementation of a quan-
tum computer. Encoding information in quantum states as “qubits” allows
to use entanglement and quantum superposition to perform calculations
that are infeasible on classical computers. The fundamental challenge in
the realization of quantum computers is to avoid decoherence – the loss of
quantum properties – due to unwanted interaction with the environment.
This thesis addresses the problem of implementing entangling two-qubit
quantum gates that are robust with respect to both decoherence and clas-
sical noise. It covers three aspects: the use of efficient numerical tools for
the simulation and optimal control of open and closed quantum systems,
the role of advanced optimization functionals in facilitating robustness, and
the application of these techniques to two of the leading implementations of
quantum computation, trapped atoms and superconducting circuits.

After a review of the theoretical and numerical foundations, the central
part of the thesis starts with the idea of using ensemble optimization to
achieve robustness with respect to both classical fluctuations in the system
parameters, and decoherence. For the example of a controlled phasegate
implemented with trapped Rydberg atoms, this approach is demonstrated
to yield a gate that is at least one order of magnitude more robust than the
best known analytic scheme. Moreover this robustness is maintained even
for gate durations significantly shorter than those obtained in the analytic
scheme.

Superconducting circuits are a particularly promising architecture for the
implementation of a quantum computer. Their flexibility is demonstrated by
performing optimizations for both diagonal and non-diagonal quantum gates.
In order to achieve robustness with respect to decoherence, it is essential to
implement quantum gates in the shortest possible amount of time. This may
be facilitated by using an optimization functional that targets an arbitrary
perfect entangler, based on a geometric theory of two-qubit gates. For the
example of superconducting qubits, it is shown that this approach leads to
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significantly shorter gate durations, higher fidelities, and faster convergence
than the optimization towards specific two-qubit gates.

Performing optimization in Liouville space in order to properly take into
account decoherence poses significant numerical challenges, as the dimension
scales quadratically compared to Hilbert space. However, it can be shown
that for a unitary target, the optimization only requires propagation of at
most three states, instead of a full basis of Liouville space. Both for the
example of trapped Rydberg atoms, and for superconducting qubits, the
successful optimization of quantum gates is demonstrated, at a significantly
reduced numerical cost than was previously thought possible. Together,
the results of this thesis point towards a comprehensive framework for
the optimization of robust quantum gates, paving the way for the future
realization of quantum computers.
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1
Introduction

Quantum mechanics has been one of the most fundamental and significant
achievements of modern physics. While to this day, the theory can seem
perplexing and at odds with the categories of everyday experience, it has
withstood any test put to it, and indeed allowed unprecedented insights
into the fundamentals of nature. Many of the philosophical questions that
quantum mechanics raises remain open. Is quantum mechanics just a
mathematical tool that happens to yield accurate predictions, or are wave
functions in fact “real” objects? Can it be true that particles are everywhere
at once, until a measurement pins them down? Is it acceptable to have a
theory of nature that involves blind chance at a fundamental level? Can the
gap between the quantum and the classical ever be bridged? All of these
questions continue to be explored by both philosophers and scientists.

At the same time, the theory itself has matured, and many scientists
and engineers have gone beyond such fundamental concerns and moved on
to explore its applications, sparking a technological revolution. Remarkably,
while the knowledge of quantum mechanics seems utterly irrelevant to the
average person on the street, it is at the core of an immeasurable number
of today’s technologies. In fact, one would be hard-pressed to find any
technological advance of the last decades that does not in some way rely on
our understanding of quantum mechanics. Without it, we would have no
lasers, no MRI scanners, no modern chemistry, and maybe most importantly,
no modern electronics and thus no information technology.

Presently, we are at the cusp of a second wave of quantum technology
that is based not just on the passive understanding of quantum effects,
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2 1. Introduction

but on the active control and manipulation of quantum systems [1]. This
new “quantum engineering” has considerable challenges, but also holds
the promise of unprecedented new possibilities; for example the control of
chemical reactions with shaped laser pulses [2], or advances in renewable
energy, where a new generation of solar power cells could mimic the process
of photosynthesis [3, 4]. Probably the most far-reaching example, and the
main focus of this thesis is the field of quantum information processing,
where logical operations are performed by manipulating the quantum system
on which the information is encoded [5].

1.1 Coherent Control of Quantum Systems
A common thread through the newly developing quantum technologies is
the concept of coherent control. The control problem can be formulated
as follows: Given a quantum system in a well-defined initial state, and a
Hamiltonian

Ĥ = Ĥ0 + Ĥc[u(t)] (1.1)

that includes a control parameter u(t), which choice of u(t) ensures that
the system evolves to some desired target state, or implements a desired
process? Instead of a single control u(t), we might also have a set of multiple
control parameters {ui(t)}.

For example, the interaction of an electronic or nuclear spin with a
magnetic field ~B(t) is described by the Hamiltonian

Ĥ = −γ
(

ŜxBx(t) + ŜyBy(t) + ŜzBz(t)
)
, (1.2)

where γ is the gyromagnetic ratio, Ŝx = ~
2 σ̂x, Ŝy = ~

2 σ̂y, and Ŝz = ~
2 σ̂z are

the operators measuring the spin in the three spatial directions, proportional
to the Pauli matrices

σ̂x =
(

0 1
1 0

)
, σ̂x =

(
0 −i
i 0

)
, σ̂x =

(
1 0
0 −1

)
. (1.3)

The components of the magnetic field Bx(t), By(t), Bz(t) are the control
parameters, and we may ask which magnetic field will bring an arbitrary
initial state |Ψ0(t = 0)〉 to an arbitrary target state

∣∣Ψtgt(t = T )
〉
at some

final time T . On a larger scale, such a control of spin systems forms the
basis of next-generation medical imaging technology or spectroscopy of
complex molecules, among other applications. In the same way, we can
ask which laser field will drive the electronic states of atoms to bind them
into ultra-cold molecules [6], which voltages to the electrodes of an ion-trap
will transport an ion over a large distance [7], or which variation of the
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confinement potential of a Bose-Einstein condensate will split the wave
function [8].

In all cases, the solution to the control problem relies on the well-defined
phase relation between the basis states of the Hilbert space, exploiting the
interference between multiple pathways. This is what defines the control as
coherent and thus puts the control problem entirely in the quantum domain.

The control problem is not limited to simple state-to-state transforma-
tions, but can equally apply to the implementation of a desired unitary
evolution Ô on an N -dimensional Hilbert space. In this case, we start from
a set of basis states {|φ1〉 , . . . , |φN 〉} and attempt to find a single control
that maps each of the basis states |φj〉 to Ô |φj〉:

∀j : Û(T, 0;u(t)) |φj〉 != Ô |φj〉 (1.4)

where Û(T, 0;u(t)) is the time evolution operator induced by the Hamiltonian
Ĥ[u(t)] from t = 0 to t = T . Note that the control u(t) is the same for each
of the basis states. If {|φj〉} is a complete basis, then any state |Ψ〉 can be
expanded as |Ψ〉 = ∑

j αj |φj〉, and thus we have implemented Û |Ψ〉 = Ô |Ψ〉
for an arbitrary state. This type of control problem is especially relevant to
quantum computation where Ô is a quantum gate.

We can go further and formulate the control problem on a more mathe-
matical basis by defining a functional JT ({|Ψj(T )〉}) that becomes minimal
if (and only if) the control implements the desired target. For example, for
a state-to-state transition, one possible choice is

JT,ss(|Ψ(T )〉) = 1−
∣∣∣〈Ψ(t = 0)

∣∣∣ Û†(T, 0;u(t))
∣∣∣Ψtgt(t = T )

〉∣∣∣2
= 1−

∣∣∣〈Ψ(T )
∣∣∣Ψtgt(T )

〉∣∣∣2 , (1.5)

where Û(T, 0;u(t)) is again the time evolution operator; Û† acts to the left
in Eq. (1.5), as |Ψ(t)〉 = Û(t, 0;u(t)) |Ψ(t = 0)〉. The task has now become
an optimization problem of finding the u(t) that minimizes JT . The time
evolution operator places an implicit constraint on the optimization, in that
the state |Ψ(t)〉 must be a solution to the proper equation of motion, usually
the Schrödinger equation:

i~ ∂
∂t
|Ψ(t)〉 = Ĥ[u(t) |Ψ(t)〉 . (1.6)

The methods for solving this constrained optimization problem constitutes
the framework of optimal control.

In simple cases, the solution to the control problem can be derived
analytically. In the above example of the two-level system of a single
spin, we can find a solution simply by solving the Schrödinger equation.
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We write the initial state |Ψ〉 in its Feynman-Vernon-Hellwarth (FVH)
representation [9, 10], a three component vector ~r obtained from projecting
the density operator ρ̂ ≡ |Ψ〉〈Ψ| onto the three Pauli matrices

ri = tr [σ̂iρ̂] . (1.7)

The pulse is also represented as a vector ~Ω with the three components Bx(t),
By(t), Bz(t), and the FVH-vector now simply precesses around ~Ω,

~̇r = ~Ω(t)× ~r . (1.8)

The optimal solution for a state transfer from ~r0(t = 0) to ~rtgt(t = T ) is
easy to see: choose ~Ω such that it points to the center of the geodesic
circle connecting ~r0 and ~rtgt, and switch the magnetic field to an arbitrary
constant amplitude until the target state is reached.

More generally, analytical solutions are usually based on a direct ap-
plication of Pontryagin’s maximum principle [11], a generalization of the
Euler-Lagrange equation familiar from the variational calculus of classical
mechanics. For spin systems, a number of non-trivial control problems
have been solved using a technique named geometric control, such as the
implementation of quantum gates [12], dissipative state-to-state transfer [13],
and control under inhomogeneous magnetic fields [14].

Usually, an analytic solution to the control problem is only possible as
long as the system or the optimization functional is reasonably “simple”. One
problem is that the analytic solutions are often of bang-bang type, i.e., they
switch instantaneously between zero and some constant amplitude. This
type of control would not be compatible with constraints on the smoothness
or spectral width of the control, reflecting that such controls may not be
realistic. For example, a laser field cannot be switched instantaneously.

Furthermore, analytical solutions are usually restricted to Hilbert spaces
of very small dimension. A standard approach is to try to derive a reduced
effective model of a physical system that is valid in a certain parameter
regime. For example, in a two-photon transition between two levels via one
or more intermediary levels, the intermediate levels can be adiabatically
eliminated if both driving fields are far off-resonant from the intermediary
levels and if the pulse shapes are slowly varying. Another example where
the dynamics can be effectively limited to a subset of the full system
is population-transfer in a Λ-shaped three-level system via the popular
STIRAP mechanism [15]. In both of these examples, the approximations
only hold under severe restrictions, specifically that the dynamics must
be adiabatic, i.e., that the system is always in an instantaneous eigenstate
of the time-dependent Hamiltonian. This is only true if the controls vary
on a sufficiently slow time scale, which is in direct contradiction to the
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requirement to implement the target process in as little time as possible. In
chapter 4, we will see the limitations of such techniques in the context of a
quantum gate optimization.

To circumvent the limitations of analytical optimal control, we turn to
numerical optimal control which takes a different approach. Starting from a
set of sub-optimal “guesses”, the control fields are iteratively improved: The
equation of motion is solved numerically, allowing to evaluate the functional,
and to modify each ui(t) such that the value of the optimization functional
decreases. This new optimized set of controls is then used as the guess for
another iteration. Eventually, assuming there are no local minima in the
optimization landscape, the procedure will converge towards an optimal
solution.

Numerical optimal control theory (OCT) holds the promise of providing
an extremely versatile tool for designing the controls necessary in a new
generation of quantum technology, going beyond simple models that can
be approached analytically, and instead meeting the demands imposed by
real-life implementations. Fundamentally, the method is only limited by
the available computational resources. This does not imply that OCT can
provide a complete black-box solution. The efficient numerical simulation
of the system dynamics relies on an suitable model that identifies the
relevant degrees of freedom. Moreover, the iterative nature of the control
scheme makes it necessary to start from a reasonably well-chosen guess
pulse in order to converge quickly. Designing such a guess pulse still
requires a thorough understanding of least some possible control mechanisms.
Lastly, the optimized pulses resulting from OCT can be extremely complex,
sometimes making their physical implementation a challenge. From a
theorist’s perspective, understanding the mechanisms employed by the pulse
can be a non-trivial task, but it provides the chance for an important
interplay between analytical and numerical solutions. Ideally, entirely new
control mechanisms can be identified, or OCT can find the most suitable
out of several possible strategies, and the gained knowledge can go into
the design of better guess pulses, or even new analytic schemes. Thus,
OCT does not substitute for a deep understanding of the physics of a given
quantum system, but it augments the framework of coherent control by an
important and powerful tool.

The methods of optimal control, both analytic and numerical, originate
from extensive work in mathematics and engineering [16, 11, 17, 18, 19].
In the context of quantum systems, these ideas were first applied to the
control of molecular interactions [20, 2], and later to the control of spins in
nuclear magnetic resonance [21, 22, 23] as well as to a wide range of other
quantum systems [24]. Some of the central algorithms used in numerical
optimal control of quantum systems are presented in chapter 3.



6 1. Introduction

1.2 Quantum Computation

Quantum computation [5] is a particularly far-reaching and exciting type of
quantum technology. As microchips become smaller and smaller, following
Moore’s law [25], they will reach sizes at which quantum effects are dominant.
At this point, in order to achieve further improvements in computing power,
a paradigm shift is necessary, where quantum effects are no longer seen as a
perturbation to classical electronic circuits, but are actively involved in the
computational process.

The motivation for quantum computers is more fundamental than that,
however. The “weirdness” of quantum mechanics promises radically more
powerful ways of processing information. A key observation is that quantum
mechanics cannot efficiently be simulated on a classical computer [26], giving
the motivation for quantum computing was to use one quantum system to
simulate the behavior of another. This is possible because the theoretical
framework of quantum mechanics is entirely abstract from the diverse range
of systems it models. Therefore, a quantum system that is easily engineered
and controlled in the lab could stand in for another system that is less
accessible. The far-reached applications of a quantum simulator typically
include open problems in solid states physics, such as high-temperature
superconductivity or quantum phase transitions [27, 28], but extend to other
fields such as high-energy physics or cosmology as well [29].

The reason that a classical computer cannot efficiently simulate a large
quantum system originates from the feature that distinguishes quantum
states from classical states: quantum superposition and entanglement.
Whereas a register of n classical bits encodes exactly one of 2n possible
values composed of n binary digits bi, reg = |b0 . . . bn|, the quantum version
of this register is described by a quantum state

|Ψ〉 =
2n−1∑
i=0

ai
(∣∣∣q(i)

0

〉
⊗ · · · ⊗

∣∣∣q(i)
n−1

〉)
, (1.9)

with q(i)
j ∈ {0, 1}, i.e., a simultaneous superposition of all the 2n eigenstates

of the n-quantum-bit-register, with complex coefficients ai. The amount
of information required to describe the state of a quantum system grows
exponentially with the size of the system, but grows only linearly for
a classical system. This raises the question whether more generally, a
quantum system could also implement a universal computer that would be
fundamentally more powerful than classical computers.

In theoretical computer science, the question of computability is ad-
dressed in the model of the Turing machine [30] as a universal computer,
i.e., one that can compute any computable function. As an important
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prerequisite to the possibility of a universal quantum computer, a quantum
version of such a Turing machine has been shown [31] to be at least as
powerful as its classical counterpart, and to solve at least some problems
with greater efficiency [32].

In practice, the concept of a universal quantum computer takes its
inspiration from the standard digital computer, implemented as a network
of electronic logical gates on a microchip. Such a computer can perform
any manipulation of bits in its memory. Similarly, a gate-based model of
a quantum computer, reviewed in chapter 2 is implemented as a network
of quantum gates that perform any operation on the quantum bits in its
memory. Compared to classical circuits, there are some caveats imposed by
the laws of quantum mechanics [5]: the quantum network has to be unitary,
i.e., fully reversible and the copying of a quantum state is not allowed [33].

At first glance, quantum superposition might seem to make it obvious that
a quantum computer could solve problems at exponentially greater efficiency
than a classical computer. In a quantum analogue of a classical circuit, one
could simply prepare the quantum superposition of all possible inputs, and
the circuit would simultaneously calculate all possible results, in a form
of quantum parallelism. Unfortunately, the resulting quantum state has to
be measured in order to read it out, collapsing the superposition of results
to one result at random. Designing quantum algorithms in which some of
the computational power resulting from quantum parallelism survives the
measurement process requires great ingenuity. The most striking case in
which such an algorithm has been devised is Shor’s method of factoring
numbers [34]. Given an integer that is the product of two large prime
numbers, the best classical algorithm to find the two factors runs in near
exponential time [35], whereas Shor’s algorithm can perform the same task
in polynomial time on a quantum computer.

In general, the understanding of all the ways quantum algorithms could
outperform classical algorithms is incomplete. An underlying theme, how-
ever, is that it can be possible to obtain some global property, i.e., a property
shared by all states in the superposition. The question then becomes how
to cleverly manipulate the input of the quantum computer such that the
resulting output has some interesting global property, which will survive
the measurement. This is exactly what Shor’s algorithm exploits. It turns
out [36] that finding the prime factors of a large integer N can be mapped
to finding the period of the function

f(x) = ax mod N (1.10)

for random integers a < N . The period is found using a quantum Fourier
transform that maps every eigenstate |i〉 of an n-dimensional Hilbert space
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as

|i〉 → 1√
n

n−1∑
j=0

exp
[
2πi ij

n

]
|j〉 . (1.11)

This is analogous to the classical Fourier transform, cf. appendix E; as
in the classical case, each value in the spectrum gives a global property
of the original function. In the case of the quantum Fourier transform, a
measurement has the greatest likelihood for yielding the dominant frequency
component of f(x), and thus ultimately solves the factoring problem.

The factoring of large integers is a highly relevant problem, because
the security of one of the most widely used encryption systems, the RSA
algorithm [37], relies on it. Having a machine that could factor large integers
efficiently would instantly break all such encryption.

Beyond the quantum Fourier transform and the algorithms derived
from it, there is currently one other class of quantum algorithms that are
fundamentally faster than their classical counterparts. The core problem
is finding one specific value from a list of N non-sorted entries. In the
classical case, there is no better solution than to look at all N entries of
the list, stopping when the target element is found. Quantum mechanically,
Grover’s quantum search algorithm [38] can perform the same task in only√
N steps.
While Grover’s algorithm provides a less impressive advantage over the

classical algorithm, its applications are much farther reaching. There is a
large class of “hard” problems where there is no way to find a solution in
polynomial time, but it is easy to verify that a given solution is the correct
one. In complexity theory, such problems belong to the category “NP” [39].
These include many famous graph-theoretical optimization problems, such
as versions of the traveling salesman problem [40] or the graph coloring
problem [41]. In the worst case, an NP problem can be solved by enumerating
all N possible solutions and selecting the desired one, where N depends
exponentially on the size of the problem. Using Grover’s algorithm in such
a case would give a very significant speedup N →

√
N , even though the

solution remains exponential in principle.
The underlying idea of Grover’s algorithm is that since a solution can

easily be identified, it is possible to implement an oracle quantum gate
that selectively flips the phase of the eigenstate associated with the correct
solution. Once the eigenstate has been “tagged” in this way in a superpo-
sition of all eigenstates, the amplitude amplification technique [42, 43] is
employed, which increases the relative amplitude of the tagged state. This
amplification has to be repeated on the order of

√
N time before the target

state dominates over all other eigenstates, and can be measured with high
likelihood. Essentially, the quantum search algorithm finds a needle in a
haystack by increasingly growing the needle and shrinking the haystack,
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until the needle can be easily picked out by a blind grab.
There are a wide variety of quantum systems that have been considered

to implement such a universal quantum computer [5], from nuclear spins [44],
to quantum dots [45], to trapped ions [46] to nitrogen-vacancy centers [47]
– to name just a few examples. No implementation to date has overcome
all the technical challenges required to implement a working, universal,
large-scale quantum computer. In this thesis, two systems in particular
are used as examples, trapped Rydberg atoms, reviewed in section 4.1 of
chapter 4, and superconducting circuits, reviewed in chapter 5. The latter
are particularly promising candidates for quantum computing, since they
share many of their techniques with present day classical computer chips
and can be engineered with great versatility.

There are some aspects of using quantum systems to store and process
information that go beyond the ideas of universal quantum computers.
With the cryptographic applications of the most prominent quantum algo-
rithms threatening the security of existing encryption schemes, quantum
mechanics has also provided a possible answer, in the form of quantum
communication and quantum cryptography [48, 49, and references therein].
Information is stored in the quantum states of a photon, which can easily be
transmitted through optical fibers. Since unknown quantum states cannot
be copied [33], and any measurement collapses the quantum state, it is
impossible to wiretap the optical fiber without the eavesdropping being
detected. Thus, quantum communication provides a fundamentally secure
channel of communication. Once a secure channel is established, it can be
used to exchange cryptographic keys, providing the basis for an unbreakable
encryption system [50], although in practical implementations, loopholes
may still exist [51]. Such quantum key-distribution networks have been
successfully implemented and are commercially available [52, 53, 54].

There has also been considerable interest in quantum computers that
do not fit into the standard gate model, i.e., “special-purpose” quantum
computers. One approach is that of adiabatic quantum computing [55]. The
idea is to engineer a complex Hamiltonian Ĥ(T ) whose (unknown) ground
state encodes the result of a computation. The system is then initialized to
the known ground state of a simpler Hamiltonian Ĥ(0). Then, the simple
Hamiltonian is slowly (“adiabatically”) transformed into the complex result
Hamiltonian. According to the adiabatic theorem, the system will remain in
the ground state of the evolving Ĥ(t) at all times. In this way, the ground
state of the complex Hamiltonian, and thus the solution to the computation
problem is found. Performed fully coherently, at zero temperature, adiabatic
quantum computing can be shown to be mathematically equivalent to the
standard gate model [56]. A “messier” version at non-zero temperature,
in which the qubits are strongly coupled to their environment throughout,
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but still maintain some quantum coherence is known as quantum annealing.
A quantum processor based on quantum annealing has been built and
marketed [57] by the Canadian company DWave, and is to date the only
commercially available quantum information processing device (outside of
quantum communication networks). However, the DWave processor has
been subject to severe criticism [58, 59, 60], questioning whether it provides
any speedup over classical computers. Nonetheless, applications of the
architecture to machine learning [61, 62] are currently being explored.

1.3 Decoherence
The standard description of quantum mechanics [63] considers a quantum
system to be in complete isolation. This is almost never a realistic as-
sumption. Any quantum system will have some remaining interaction with
its environment; this is especially true in a control context, where simply
the fact that the system can be influenced from the outside indicates that
it cannot be completely isolated. For example, the same dipole moment
that allows an atom to be controlled with a laser beam also couples that
atom to possibly unwanted stray photons, or even the vacuum mode of
the electromagnetic field, causing spontaneous emission. Such unwanted
interaction with the environment is the source of decoherence [64], i.e., the
loss of “quantumness”. More precisely, the fixed phase relation between
the eigenstates of the Hilbert space is lost. Since coherent control relies on
exploiting the interference of exactly these phases, decoherence is funda-
mentally detrimental to the objective. For a technology built specifically on
quantum features, decoherence is an obvious challenge.

Mathematically, the effects of decoherence are well-described. Instead of
a state vector |Ψ〉 in Hilbert space, the system is now modeled as a density
matrix ρ̂ in Liouville space. The density matrix formalism, presented in
chapter 2, allows to represent both pure states that are equivalent to the
state vectors in Hilbert space, but also mixed states that describe the system
when decoherence has taken place. In a closed system, the direct equivalent
of the Schrödinger equation (1.6) is the Liouville-von Neumann equation

i~ ∂
∂t
ρ̂closed =

[
Ĥ, ρ̂closed

]
. (1.12)

For an open system, the decoherence is expressed as a dissipator D, which
occurs as an additional term in the Liouville-von Neumann equation.

i~ ∂
∂t
ρ̂open =

[
Ĥ, ρ̂open

]
+D

[
ρ̂open

]
. (1.13)

In principle, the methods of OCT still apply to the open quantum system,
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except that the control functional to be minimized now has to be expressed
in Liouville space. For example, the Liouville space equivalent to Eq. (1.5)
is

JT,ss(ρ̂) = 1−
∣∣∣tr [ρ̂†(T )ρ̂tgt

]∣∣∣2 . (1.14)

In the presence of decoherence, the promise of optimal control is only
reinforced. One reason is that in Liouville space, it is even harder than in
Hilbert space to devise analytical control schemes. Thus, numerical tools are
often the only way to effectively tackle the problem. Examples for the use of
numerical optimal control of systems that are subject to decoherence include
laser cooling of the internal degrees of freedom in molecules, maximizing
coherences [65], distilling out the influence of noise [66], guiding the dynamics
of a quantum state [67], and the mitigation of Markovian dephasing noise
on single qubits [68].

For the realization of large scale quantum computing, it is crucial to
limit or circumvent the effects of decoherence. The phase relation between
the states in the quantum computer is at the heart of both the algorithms
discussed in section 1.2. In Shor’s algorithm, the underlying quantum
Fourier transform identifies global properties of the wave function, inherently
embodied in phase information. In Grover’s algorithm, the correct solution
to the search is tagged by a phase flip, allowing it to be amplified. Thus, the
loss of phase information destroys all chance for true quantum computation,
and the speedup it promises over classical computers. Optimal control
provides a tool for addressing the issue of decoherence, allowing to implement
quantum gates with sufficiently high fidelity that quantum error correction
can guarantee fault-tolerant quantum computing.

Taking decoherence into account explicitly in the optimization allows
to actively search for solutions where its effects are minimized. Generally,
not all levels suffer equally from decoherence, and optimal control can
restrict the solution to those levels that are least affected. In chapter 4,
we consider a case where there is significant spontaneous decay from only
one of the levels, and see how optimal control circumvents the effects
of decoherence by not populating this level. Lastly, an obvious way to
counter decoherence, is to find solutions for the control problem that act
on a faster time scale than the dissipation, so that the desired process is
implemented before the decoherence becomes too noticeable. In this context,
it becomes especially important that numerical optimal control can find
the shortest possible controls, reaching what has been called the quantum
speed limit [69, 70, 71, 72, 73].
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1.4 Organization of the Thesis
The work presented in this thesis explores possibilities for using numerical
optimal control to implement robust two-qubit gates in open quantum sys-
tems. Chapter 2 gives an overview of the theoretical foundations, outlining
the concepts of quantum computing, followed by an introduction to the
description of open quantum systems. Chapter 3 discusses the necessary
numerical tools for the representation and dynamical simulation of both
open and closed quantum systems, as well as algorithms for optimal control.

Chapter 4 presents a first example for the application of these tech-
niques to the implementation of a quantum gate for trapped neutral atoms.
Robustness with respect both to dissipation and fluctuations in technical
parameters is achieved by performing the optimization in Liouville space,
and by optimizing for an ensemble of Hamiltonians that samples over the
relevant range of fluctuations. By including the desire for robustness explic-
itly in the optimization functional, optimal control can find solutions that
meet the desired objectives.

One of the most promising architectures for quantum computation is
based on superconducting circuits, reviewed in chapter 5. The qubits in
this implementation allow for unparalleled flexibility, where parameters
and interactions can be engineered over a wide range. Especially with the
development of the transmon qubit, decoherence times have been pushed
to a regime where large scale quantum computing appears within reach.
Entangling gates on two transmons can be implemented by coupling both
qubits to a shared transmission line resonator, which mediates an effective
coupling between them. We discuss the derivation of an effective model
for the qubit-qubit interaction, which is the basis for some of the results
presented in chapters 6 and 7. Furthermore, we review some of the basic gate
mechanisms that have been demonstrated experimentally, before exploring
the use of an off-resonant driving field to induce Stark shifts in the levels
of the logical subspace, realizing a holonomic phasegate. Finally, we show
optimization results for a CPHASE, CNOT, and the holonomic gate in the
full qubit-qubit-cavity model.

Chapter 6 illustrates the power of optimal control to exploit any freedom
allowed by the optimization functional. Instead of optimizing for a specific
quantum gate implemented on superconducting qubits, the target is an
arbitrary perfect entangler, i.e., a gate that entangles some initially separable
states. Not restricting the optimization unnecessarily holds the promise of
allowing optimal control to identify the gates least affected by decoherence,
or the gates that can be implemented in the shortest possible time, in the
hope the decoherence will only become relevant on longer time scales.

The quadratic scaling of Liouville space compared to Hilbert space
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provides significant challenges for the simulation and optimization of open
quantum systems. Chapter 7 illustrates the possibility of a significant
reduction in the resources required for optimization. Under the assumption
that the optimization target is unitary (e.g., a quantum gate), it is not
necessary to consider a full basis of Liouville space consisting of d2 matrices,
where d is the dimension of the underlying Hilbert space. Instead, at most
3 states need to be included in the optimization. This is illustrated for both
trapped neutral atoms and superconducting circuits. Finally, chapter 8
summarizes and gives an outlook.





2
Quantum Information in Open

Quantum Systems

The central focus of this thesis is the numerical realization of quantum
gates that are robust with respect to dissipation. While the numerical
tools are presented in chapter 3, here, a concise overview of the theoretical
foundations is given. We touch upon two sub-fields of quantum theory.
The first is quantum computing, i.e., the theory of how information can be
encoded and processed in quantum systems. After introducing the basic
terminology of quantum mechanics in section 2.1 and defining quantum
bits (qubits) in section 2.2, we discuss single-qubit and two-qubit gates in
sections 2.3–2.4. The second field is the theory of open quantum systems,
i.e., of quantum systems undergoing dissipation. The state of such a system
can no longer be described as a vector in Hilbert space. Instead, the density
matrix formalism reviewed in section 2.5 is used. The time-evolution within
this formalism is presented in section 2.6, before discussing some of the
techniques for countering decoherence in section 2.7.

The material presented here is not a complete review of either topic by
far; the intention is to define the central terms, introduce the notation used
throughout this thesis, and to provide a point of reference for the following
chapters. The description of the fundamental concepts of quantum mechan-
ics follow the book by Sakurai and Napolitano [63], whereas the discussion
on quantum computation and open quantum systems is mostly based on
the textbooks by Nielsen and Chuang [5], and Breuer and Petruccione [64],
respectively.

15
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2.1 The Postulates of Quantum Mechanics
The fundamental postulate of quantum mechanics is that the state of
a system is completely described by a wave function |Ψ〉, element of a
Hilbert space, and that every physical quantity, or observable, is associated
with a Hermitian operator Â. We also define the dual 〈Ψ| that allows
to formulate the inner product (·, ·) → C. For two states |Ψ〉, |φ〉, their
inner product, or overlap, is written as 〈Ψ |φ〉. All states are normalized as
‖|Ψ〉‖ =

√
〈Ψ |Ψ〉 = 1.

Quantum mechanics is inherently probabilistic; knowledge of a quantum
state |Ψ〉 does not in general determine a unique value for an observable,
but only predicts the expectation value〈

Â
〉

=
〈

Ψ
∣∣∣ Â ∣∣∣Ψ〉 =

(
|Ψ〉 , Â |Ψ〉

)
. (2.1)

Since the operator Â is Hermitian, its expectation value is real, as required for
a physically meaningful quantity. Of particular interest is the Hamiltonian,
whose expectation value is the total energy E of the system, as expressed
by the time-independent Schrödinger equation,

Ĥ |Ψ〉 = E |Ψ〉 . (2.2)

Eq. (2.2) takes the form of an eigenvalue problem, where |Ψ〉 is the eigenstate
associated with the eigenvalue E. For bound states, i.e., those that are
localized by a potential to a finite region of space, the spectrum of the
Hamiltonian is discrete. That is, Eq. (2.2) can be fulfilled only for a set of
N eigenstates,

Ĥ |φn〉 = En |φn〉 , n = 1 . . . N . (2.3)

The discrete, or “quantized” energy levels are what gives quantum theory
its name.

The set of eigenstates {|φn〉} is complete, i.e., any state |Ψ〉 can be
expanded as

|Ψ〉 =
N∑
n=1

an |φn〉 ,
N∑
n=1
|an|2 = 1 , (2.4)

with complex coefficients an. Equivalently, introducing the dyadic product
P̂i,j = |φi〉〈φj |, defined as

P̂i,j |Ψ〉 = (|φi〉〈φj |) |Ψ〉 = 〈φj |Ψ〉 |φi〉 , (2.5)

we can write the completeness relation

N∑
n=1
|φn〉〈φn| = 1 . (2.6)
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P̂n = |φn〉〈φn| is also called the projector onto the eigenstate state |φn〉.
By definition, eigenstates are also linearly independent and thus pair-wise

orthogonal, 〈φi |φj〉 = δij , where δij is the Kronecker-Delta. The set of
eigenstates {|φ1〉 . . . |φN 〉} is therefore a complete orthonormal basis of the
Hilbert space of dimension N . Note that the basis is not unique; any unitary
transformation Û, with ÛÛ† = 1, will generate a “rotated” basis.

Having expanded an arbitrary state |Ψ〉 in the eigenbasis of an operator in
Eq. (2.4), we define the measurement process according to the Copenhagen
interpretation: The “projective” measurement of an operator Â in a given
basis instantaneously “collapses” the state |Ψ〉 to one of the operator’s
eigenstates |φn〉. The probability of obtaining any specific eigenstate is
given by the absolute-square of the expansion coefficient an. This motivates
the normalization of the coefficients as ∑ |an|2 = 1, since the sum of all
probabilities must be 1. The result of the measurement (and any subsequent
measurement in the same basis) is the eigenvalue associated with |φn〉.

For a finite and discrete Hilbert space as described above, it is useful to
represent states as complex vectors with N components, and the operators
as N ×N matrices, relative to a fixed basis {|φn〉}. The entries in the vector
representation of |Ψ〉 are the expansion coefficients an of Eq. (2.4). The
entries Aij of the operator-matrix are given by

Aij =
〈
φi
∣∣∣ Â ∣∣∣φj〉 . (2.7)

2.2 Storing Information in Quantum Systems
Having a discrete and finite Hilbert space raises the possibility of using
it to encode information digitally. In classical computing, it has proven
most practical to work in a binary representation, using the logical values
0 and 1 (implemented as low and high voltage in an electrical circuit). A
single logical value is called a bit (binary digit). In analogy, we consider
a 2-dimensional Hilbert space and label its basis states |0〉 and |1〉. An
arbitrary state of this system, called quantum bit (qubit), is

|Ψ〉1q = a0 |0〉+ a1 |1〉 , |a0|2 + |a1|2 = 1 . (2.8)

Whereas the classical bit is in a state of either 0 or 1, the qubit can be in
any superposition of |0〉 and |1〉.

The theory of quantum mechanics is universal in the sense that it de-
scribes any quantum system on an abstract level with the same formalism.
In practice, the systems can be extremely diverse, from nuclear spins to
the electronic states of atoms and molecules, quantum dots, Bose-Einstein-
condensates, nano-mechanical devices, photons (free or in optical cavities),
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or superconducting circuits. Mathematically, these only differ in the struc-
ture of their Hamiltonian. From an experimentalist’s points of view, of
course, they are vastly different. All of these systems are in principle candi-
dates for the implementation of a quantum computer. However, in order
to be practically useful for quantum computation, a quantum system must
fulfill the five DiVincenzo criteria [74]:

1. a scalable physical system with well characterized qubits,

2. the ability to initialize the state of the qubits,

3. long relevant decoherence times,

4. a “universal” set of quantum gates, and

5. a qubit-specific measurement capability.

Already the first requirement puts severe restrictions on a candidate
system. While spin-1

2 particles have two possible states (spin-up and spin-
down) and thus provide a “natural qubit”, this is not the case in general.
Most systems have a Hilbert space of dimension larger than 2. In this case,
two of the levels must be well-separated from the remainder of the Hilbert
space, forming a logical subspace. An example for a system that is not
suitable in this regard is the quantum harmonic oscillator, which has all
equidistant energy levels. Thus, no two levels can be addressed separately
from the others and could provide a qubit. On the other hand, if there is
sufficient anharmonicity in the levels, the system can provide a well-defined
qubit. In many cases, the additional levels can be exploited as ancillas to
implement quantum information tasks, as we will see in the examples in
chapters 4–7. However, if the entire population does not eventually return
to the logical subspace, this introduces an error into the quantum operation.

Scalability means that the system must coherently support a large number
of qubits (at least several hundred). Mathematically, the n-qubit Hilbert
space is constructed from the tensor product of the n single-qubit Hilbert
spaces,

|Ψ〉nq =
∑
bi=0,1

ab1b2...bn |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉

=
∑
bi=0,1

ab1b2...bn |b1b2 . . . bn〉 ,
(2.9)

where |bi〉 represents the two basis states |0〉, |1〉 of the i’th qubit. For
example, for a two-qubit state,

|Ψ〉2q = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 . (2.10)
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In general, it is not possible to write

|Ψ〉2q = (a0 |0〉+ a1 |1〉)⊗ (b0 |0〉+ b1 |1〉)
= a0b0︸︷︷︸

a00

|00〉+ a0b1︸︷︷︸
a01

|01〉+ a1b0︸︷︷︸
a10

|10〉+ a1b1︸︷︷︸
a11

|11〉 . (2.11)

If Eq. (2.11) holds, |Ψ〉2q is said to be separable. Otherwise, |Ψ〉2q is
entangled. The entanglement of a given two-qubit state can be quantified
through the concurrence [75]

C
(
|Ψ〉2q

)
=
∣∣∣〈Ψ2q

∣∣∣ σ̂y ⊗ σ̂y ∣∣∣Ψ∗2q〉∣∣∣ , (2.12)

where σ̂y is the Pauli-y matrix, see Eq. (2.17) below, and |Ψ∗〉2q is the com-
plex conjugate of |Ψ〉2q (in a given vector representation). The concurrence
takes values in the range [0, 1], where a state for which C (|Ψ〉2q) = 1 is
called maximally entangled. The standard example for maximally entangled
states are the Bell states∣∣∣Φ+

〉
= 1√

2
(|00〉+ |11〉) ,

∣∣Φ−〉 = 1√
2

(|00〉 − |11〉) , (2.13)∣∣∣Ψ+
〉

= 1√
2

(|01〉+ |10〉) ,
∣∣Ψ−〉 = 1√

2
(|00〉 − |11〉) . (2.14)

Even though DiVincenzo’s criterion 1 requires the system to scale to a
large number of qubits, we have focused here on the description of two-qubit
systems. The reason for this is that any operation on more than two qubits
can be expressed as a series of operations where in each operation, at most
two of the qubits interact [76].

Criteria 2 and 5 concern the input-output of a quantum computer.
For most implementations, this is less of a fundamental concern than a
(possibly difficult) technical challenge. It can be useful to employ the
methods of quantum control discussed in chapter 1 to bring the system
into a desired initial state. Measurement and detection are primarily an
experimentalist’s task, although theory can certainly contribute relevant
aspects. For example, the ideas on which the results of chapter 7 build have
been applied to significantly reduce the number of measurements required for
the characterization of unitary processes [77, 78]. Also, for superconducting
qubits, optimal control has been applied to the measurement process [79].

On the other hand, the implementation of quantum gates, i.e., a unitary
transformation on all the eigenstates of the logical subspace (criterion 4), is
where numerical optimization techniques shine, and it is the central focus of
the remainder of the thesis. Lastly, the long decoherence times required by
criterion 3 are a significant inherent challenge. The effects of decoherence
are discussed in sections 2.5–2.7 below; implementing quantum gates in the
presence of decoherence is the focus of chapters 4 and 7.
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2.3 Gate-Based Quantum Computing

2.3.1 Single-Qubit Gates
While the encoding of information only relies on the existence of quantized
energy levels in quantum systems, its processing implies time-dependence.
From a given input state at time zero, a quantum computer applies a series of
logical transformations, eventually resulting in a state at time T . Physically,
the input state undergoes the time evolution of the system’s Hamiltonian.
For a system of qubits, we call the resulting time evolution operator Û(T, 0)
a quantum gate U . For a static Hamiltonian, the time evolution operator

Û(t, 0) = e−
i
~ Ĥt (2.15)

is the solution of the time-dependent Schrödinger equation

i~ ∂
∂t
|Ψ〉 = Ĥ |Ψ〉 . (2.16)

A quantum gate operating on a single qubit can be any unitary 2 × 2
matrix. Their mathematical properties are best understood with the help
of the three Pauli matrices

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (2.17)

First, the Pauli matrices are important single-qubit quantum gates them-
selves. In this context, they are also written as X, Y , and Z, respectively.
The X gate flips a qubit (analogously to a classical logical NOT operation
on a bit), whereas Z creates a π phase shift between |0〉 and |1〉.

Even more importantly, though, we can use the Pauli matrices (together
with the identity 1) to describe any single-qubit Hamiltonian

Ĥ1q = c01 + c1σ̂x + c2σ̂y + c3σ̂z (2.18)

with coefficients ci ∈ R. The gate U induced by the Hamiltonian Ĥ1q acting
for a duration t is

U = Û[t, 0] = e−ic0t e−i(c1σ̂x+c2σ̂yt+c3σ̂z)t . (2.19)

From
X = e−iπ4 (σ̂x−1) , (2.20)

and equivalently for σ̂y and σ̂z, we see that the Pauli matrices are their own
generators. The contribution by the identity, defined by c0, only induces
a global phase, which is physically irrelevant. Beyond the Pauli matrices,
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|0〉, z

|1〉

Figure 2.1: Bloch sphere with Bloch vector for the qubit state
|Ψ〉 = 3

11 |0〉+ 1+i
11 |1〉. The precession induced by a Hamiltonian proportional to σ̂x,

σ̂y, and σ̂z is indicated by the orange, blue and red circles, respectively

frequently encountered single-qubit gates are the Hadamard gate,

H = 1√
2

(X + Y ) = 1√
2

(
1 1
1 −1

)
, (2.21)

which brings the logical eigenstates into superposition, and the single-qubit
phase gate as a generalization of the Z gate,

Sφ =
(

1 0
0 eiφ

)
, (2.22)

generating a relative phase between |0〉 and |1〉.
An arbitrary quantum state |Ψ〉 can be associated with the density

matrix
ρ̂ = |Ψ〉〈Ψ| , (2.23)

i.e., the projector onto that specific state. If we expand this matrix into the
three Pauli matrices, we obtain a vector ~r ∈ R3 that represents the state up
to a global phase. This vector is called the Bloch vector. We have already
encountered the Bloch vector in chapter 1 under the name “Feynman-Vernon-
Hellwarth representation”. Since for a properly normalized qubit state, |~r| =
1, the Bloch vector is on the unit sphere, called Bloch sphere in this context.
Like in chapter 1, ~r precesses around the vector (c1, c2, c3) representing the
Hamiltonian, obtained from Eq. (2.19). Specifically, Eq. (2.19) corresponds
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to the solution of Eq. (1.8). The Bloch sphere is illustrated in Fig 2.1 for an
arbitrary qubit state. A term proportional to σ̂x induces a rotation around
the x-axis, shown in orange, and correspondingly σ̂y and σ̂z around the y-
and z-axes (blue and red, respectively).

2.3.2 Two-Qubit Gates
For a composite system of multiple qubits, the total Hilbert space is the
tensor product of the single-qubit Hilbert spaces. Since for a single-qubit
state the Pauli matrices (including the identity) form a complete basis
according to Eq. (2.18), for a two-qubit Hilbert space, this means that any
Hamiltonian is of the form

Ĥ2q =
∑
i,j

cij σ̂i ⊗ σ̂j , (2.24)

generated by the sixteen operators σ̂i ⊗ σ̂j , for σ̂i,j ∈ {σ̂x, σ̂y, σ̂z,1}, with
the expansion coefficients

cij = 1
4 tr

[
(σ̂i ⊗ σ̂j)†Ĥ2q

]
. (2.25)

This is analogous to Eq. (2.10) for states. If there is no interaction between
the two qubits, the Hamiltonian for the two-qubit system is

Ĥ0 = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q . (2.26)

In matrix representation, for two operators of dimension N , the tensor
product is defined as

Â⊗ B̂ =


a11B̂ . . . a1N B̂
... . . . ...

aN1B̂ . . . aNN B̂

 . (2.27)

The “local” Hamiltonian Ĥ0 consists only of terms proportional to the 6
operators σ̂(1)

x , σ̂(1)
y , σ̂(1)

z , σ̂(2)
x , σ̂(2)

y , σ̂(2)
z , and 1, where σ̂(1)

i = σ̂i ⊗ 1 acts
only on the first qubit, and equivalently σ̂(2)

i acts only on the second qubit.
Starting from a non-entangled state, evolution under Ĥ0 does not yield an
entangled state. In order to generate entanglement, there needs to exist
a physical interaction between the two qubits, reflected in an interaction
Hamiltonian ĤI ,

Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q + ĤI , (2.28)

where ĤI is spanned by the remaining 9 terms σ̂i ⊗ σ̂j , i, j = x, y, z. From
hereon, we abbreviate σ̂i ⊗ σ̂j as σ̂iσ̂j in the context of two-qubit Hilbert
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spaces.
Two very common interactions found in physical systems are σ̂zσ̂z and

σ̂xσ̂x + σ̂yσ̂y. The former means that the interaction between two qubits
induces a relative shift on one or more of the energy levels, resulting in a
diagonal gate

D = diag
{
eiφ00 , eiφ01 , eiφ10 , eiφ11

}
, (2.29)

where φi = ∆Eit is a phase induced by the shift ∆Ei of the level i relative
to the evolution under Ĥ0. Defining the non-local phase

γ = φ00 − φ01 − φ10 + φ11 , (2.30)

this gate induces the entanglement [80, 73]

C(D) =
∣∣∣∣sin γ2

∣∣∣∣ . (2.31)

In general, the entanglement generated by a gate Û is defined as the max-
imum concurrence according to Eq. (2.12) that the state Û|Ψ〉 can have,
assuming the input state |Ψ〉 is separable [81].

For γ = π, the gate is a perfect entangler, i.e. C(D) takes the maximum
value 1 and there exists a separable state that is mapped to a maximally
entangled state. The canonical form in this case is the Controlled-Phase
(CPHASE) gate,

CPHASE = diag{1, 1, 1,−1} . (2.32)

In the taxonomy of two-qubit gates, the CPHASE is one in the large
class of “controlled-unitary” gates. In this type of gate, the first qubit acts
as a “control” qubit. If the control qubit is in the state |1〉, the single-qubit
gate U is performed on the second “target” qubit. If the control qubit is
in the state |0〉, the target qubit remains unchanged. In the case of the
CPHASE, U is the single-qubit phase gate Z = σ̂z. Probably the most
well-known controlled-unitary is the CNOT gate [82],

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.33)

In this case, U is the logical-not operation implemented by X = σ̂x.
To understand the σ̂xσ̂x + σ̂yσ̂y interaction, we introduce

σ̂+ = σ̂x + iσ̂y , (2.34)
σ̂− = σ̂x − iσ̂y . (2.35)
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These are the raising and lowering operators on the qubit. The interaction
is then written as

σ̂xσ̂x + σ̂yσ̂y = 1
2 (σ̂+σ̂− + σ̂−σ̂+) . (2.36)

We see that this can be interpreted as an exchange interaction, where an
excitation moves from one qubit to the other. This interaction induces the
iSWAP gate

iSWAP =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 . (2.37)

It is equivalent two consecutive CNOT operations, where the target qubit
for the second CNOT is the control qubit from the first CNOT. Therefore,
iSWAP is also called the Double-CNOT (DCNOT) gate. A summary of the
most relevant two-qubit gates and the Hamiltonians inducing them is given
in appendix D.

In a physical implementation not based on actual spins we often have to
include additional levels beyond |0〉 and |1〉 in the description of the system.
For a time evolution Û(T, 0), the implemented quantum gate is

U = P̂Û(T, 0) , (2.38)

where P̂ is the projector onto the logical subspace,

P̂ = |0〉〈0|+ |1〉〈1| , (2.39)

and equivalently for a two-qubit system. The gate U will only be unitary
if at time T , all population returns to the logical subspace. This does
not imply that the population must also remain in the logical subspace
during the entire duration of the dynamics. In fact, it may be necessary
to leave the logical subspace in order to implement a quantum gate. An
example is the implementation of a two-qubit gate using trapped Rydberg
atoms, as is the focus of chapter 4. The logical subspace is defined by two
low-lying electronic states of the atoms. However, the atoms can be excited
to a Rydberg state |r〉, i.e., a state with large principal quantum number.
When both atoms are in |r〉, they feel a dipole-dipole interaction, shifting
the |rr〉 level and thus creating the necessary entanglement for a quantum
gate. While the Hamiltonian can no longer be expressed in terms of Pauli
matrices, the intuition for the implementation of gates remains: the simple
shift of the |rr〉 level can be mapped onto the logical subspace as a σ̂zσ̂z
interaction and allows the implementation of a CPHASE.

For superconducting qubits, discussed in chapter 5, the logical subspace
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consists of the two lowest levels of an anharmonic ladder. The Hamiltonian
includes the term b̂†1b̂2 + b̂1b̂†2, where b̂1,2 is the lowering operator for the
first and second (multilevel) qubit and works analogously to the interaction
in Eq. (2.36), allowing for the implementation of an iSWAP gate, among
others.

2.3.3 Controllability
So far, we have only considered a static interaction Hamiltonian. The
situation becomes more interesting if the Hamiltonian includes one or more
time-dependent controls ui(t),

Ĥ = Ĥ0 +
m∑
i=1

ui(t)Ĥi . (2.40)

If we restrict ourselves to the logical subspace such that each Ĥi takes the
form of Eq. (2.24), understanding which gates are induced by Eq. (2.40)
relies on the theory of dynamical Lie algebras and groups [83]. In practical
terms, the procedure for determining which gates can be implemented in a
given system, is as follows:

1. Start from the set of independent terms in the Hamiltonian,

L = {Ĥ0, Ĥ1, . . . Ĥm} . (2.41)

2. Calculate all commutators of the elements of L. Extend L by those
commutators that are linearly independent from the existing elements.

3. Repeat the procedure, building nested commutators, until it yields
no further new elements.

The reachable gates are those in the span of the dynamical Lie algebra,

e−iLt ≡
 ∏

Âi∈L
e−iÂit

 . (2.42)

If the dimension of the dynamical Lie algebra is full, i.e., it contains 16
linearly independent elements for a two-qubit Hamiltonian, the system is
fully controllable, i.e., every quantum gate can be implemented in principle.
An example for such a controllability analysis is given in section 6.2 of
chapter 6.

From a control perspective, it is essential to have a measure for whether
a unitary evolution Û(T, 0) implements a specific quantum gate Ô at time
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Figure 2.2: Exemplary circuit diagram, showing the implementation of a quantum
Fourier transform on three qubits.

T . The gate fidelity in this case is defined as

F (Û(T, 0)) = 1
N2

∣∣∣tr [Ô†P̂Û(T, 0)
]∣∣∣2 , (2.43)

where P̂ is the projector to the logical subspace. The square-modulus ensures
that the gate Ô only has to be implemented up to a global phase. The gate
fidelity is not necessarily the best functional to be used for the purpose of
optimization, as will be discussed in chapter 3.

2.3.4 Universal Sets of Gates
Any practical quantum computer will operate on a large number of qubits.
In principle, a quantum algorithm could be described as a black box unitary
transformation acting on the entire Hilbert space HN for N qubits. However,
this approach would hardly be practical. The logical circuits in a classical
computer are decomposed into small logical elements. Indeed, it can be
shown that any logical function can be implemented using only the classical
NAND gate, taking two bits as input and returning true unless both of the
inputs are true. This greatly simplifies the production of integrated circuits,
as only a single logical element needs to be repeated over and over again on
the circuit board. In a gate-based quantum computer, we follow the same
approach [82]. Unlike in the classical case, there is no single gate that can
be used to implement an arbitrary quantum transformation.

However, it has been shown that any quantum transformation can be
decomposed into the set of all single-qubit gates, together with one two-
qubit quantum gate, most commonly CNOT [84]. This is the motivation
to restricting any discussion about the implementation of gates to single-
and two-qubit gates. The decomposition of a larger gate into single- and
two-qubit gates is commonly in the form of a quantum circuit diagram.
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An example is shown in Fig 2.2, giving a decomposition for a quantum-
Fourier transform on three qubits. In many physical implementations, single-
qubit gates are relatively easy to implement, since they require only local
manipulation of a qubit. In contrast, the implementation of an entangling
two-qubit gate is usually non-trivial.

Instead of requiring arbitrary single-qubit gates, one can also find a finite
set of single-qubit gates that, together with an entangling gate such as
CNOT, can implement an arbitrary unitary up to a predefined precision.
There are several such possible sets; one example consists of the Hadamard
gate H, the phase gate Sπ

4
, and the CNOT gate. With H and Sπ

4
alone, any

single-qubit gate can be approximated to arbitrary precision, and in fact
with relatively good efficiency: in order to approximate a single-qubit gate
with an error of ε, on the order of O

[
log4 (1/ε)

]
operations are required [85].

The question of efficiency arises also for the choice of the two-qubit
gate included in the universal set. While the use of CNOT is standard, it
has been shown that nearly any non-local two-qubit gate is universal in
combination with single-qubit gates [86, 87], albeit not necessarily with high
efficiency. Using the CNOT gate and single-qubit operations, any other
two-qubit gate can be implemented using at most three applications of
CNOT [88]. However, the

B-GATE =


cos π8 0 0 i sin π

8
0 cos 3π

8 i sin 3π
8 0

0 i sin 3π
8 cos 3π

8 0
i sin π

8 0 0 cos π8

 (2.44)

has been shown [89] to require only two applications for universality.

2.4 Two-Qubit Gates in the Weyl Chamber
Even more important than theoretical considerations about which single-
qubit and two-qubit gates are good candidates for efficient universal quantum
computing, is the question which gates can easily and with high fidelity be
implemented in a given physical implementation. Also, it might be beneficial
to include a small number of additional gates for the implementation of a
specific algorithm, rather than insisting on a standard set. It is not always
obvious which gates are easiest to implement for a given physical system.
For the Rydberg Hamiltonian discussed in chapter 4, only diagonal gates
are possible, and thus neither CNOT nor the B-GATE could be included in
a universal set on this platform.

The theory of local invariants [90, 91] provides a way to address this
issue. Under the assumption that single-qubit gates are easily available, we
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Figure 2.3: Weyl chamber of two-qubit gates. The labeled vertices and midpoints
correspond to the equivalence class of prominent gates, with O and A2 for the
identity (i.e., all local gates), L for [CNOT/CPHASE], Q and M for [

√
iSWAP],

P and N for two different [
√
SWAP], A2 for [iSWAP/DCNOT], B for [B-GATE]

and A3 for [SWAP]. The shaded polyhedron at the center contains all gates that
are perfect entanglers, cf. appendix D.

characterize a quantum gate only by its nonlocal component. For example,
a CNOT gate can easily be obtained from a CPHASE using only two
additional Hadamard gates,

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
(
1⊗ Ĥ

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

(1⊗ Ĥ
)
. (2.45)

In this sense, CPHASE and CNOT are locally equivalent, i.e., they only
differ by local operations. All gates fulfilling this property are considered to
be in a single local equivalence class. We denote the equivalence class as
e.g. [CNOT].

The notion of the local equivalence class is based on the Cartan decom-
position of the general dynamical Lie group of the two-qubit Hilbert space,
which yields that any two-qubit gate can be written (up to a global phase)
as [91]

Û = k̂1 exp
[ i

2 (c1σ̂xσ̂x + c2σ̂yσ̂y + c3σ̂zσ̂z)
]

k̂2 , (2.46)

for real coefficients (c1, c2, c3), where k̂1 and k̂2 contain only local operations.
Every point in R3 given by the coordinates (c1, c2, c3) represents a local
equivalence class. Removing symmetries in the coefficients results in the
geometric shape shown in Fig. 2.3, named the Weyl chamber. There is one
remaining mirror symmetry through the L–A2 line on the ground surface of
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the Weyl chamber, such that e.g. O and A1, and Q and M are associated
with the same local equivalence class. Otherwise, every point in the Weyl
chamber uniquely corresponds to a set of gates that differ only by local
transformations. The c1 axis describes the diagonal gates in Eq. (2.29),
with c1 = γ – or, more generally, all controlled-unitaries. The gates at any
point except O, A2 (local gates), and A3 (gates equivalent to the SWAP
gate) create non-zero entanglement. Most two-qubit gates, those indicated
by the shaded polyhedron in Fig. 2.3 are perfect entanglers [92]. Based
on the Weyl chamber coordinates (c1, c2, c3), the local invariants (g1, g2, g3)
can be derived as

g1 = 1
4
[
cos (2c1) + cos (2c2) + cos (2c3) +

+ cos (2c1) cos (2c2) cos (2c3)
]
, (2.47a)

g2 = 1
4 sin (2c1) sin (2c2) sin (2c3) , (2.47b)

g3 = cos (2c1) + cos (2c2) + cos (2c3) , (2.47c)

uniquely identifying a gate’s local equivalence class. That is, two gates with
the same values (g1, g2, g3) differ only by single-qubit operations.

The local invariants have the additional benefit that they can be cal-
culated analytically directly from the gate Û, whereas the procedure for
determining the Weyl chamber coordinates [93] requires numerical diagonal-
ization and branch-selection of the complex logarithm. As an alternative to
Eq. (2.47), the local invariants may also be written as

g1 = 1
16Re

{
tr2(m̂)

}
, (2.48a)

g2 = 1
16Im

{
tr2(m̂)

}
, (2.48b)

g3 = 1
4
[
tr2(m̂)− tr

(
m̂2
)]

, (2.48c)

where
m̂ = ÛTBÛB , (2.49)

and
ÛB = Q̂ÛQ̂† (2.50)

is the gate written in the magic Bell basis,

Q̂ = 1√
2


1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 . (2.51)
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2.5 Density Matrix Formalism
In the context of the Bloch sphere, we have already introduced the pure
state density operator,

ρ̂ = |Ψ〉〈Ψ| (2.52)

for an arbitrary quantum state |Ψ〉. When |Ψ〉 is written as a Hilbert space
vector with respect to a fixed basis {|φi〉}, we obtain the density matrix
representation in that basis, with

ρij = 〈φi | ρ̂ |φj〉 . (2.53)

The density matrix is completely equivalent to the state space vector in
Hilbert space. Via a simple application of the chain rule in the time-
dependent Schrödinger equation (2.16), the equation of motion of the
density matrix is derived as the Liouville-von Neumann equation

i~ ∂
∂t
ρ̂ =

[
Ĥ, ρ̂

]
. (2.54)

Furthermore, the expectation value of any Hermitian Hilbert space operator
Â is 〈

Â
〉

= tr
[
Âρ̂
]
. (2.55)

The measurement process exposes the probabilistic aspect of quantum
mechanics. For example, a measurement in the canonical basis of the state
|Ψ〉 = 1√

2 (|0〉+ |1〉) of a two-level system yields the statistical ensemble
{(1

2 , |0〉), (1
2 , |1〉)}. That is, after the measurement the system is in the

state |0〉 or in the state |1〉, each with 50% probability. The concept of the
density matrix can be extended to describe the state of the system after
the measurement. For a statistical ensemble of N quantum states |Ψi〉,
i ∈ [1, N ], each occurring with probability pi, the mixed state density matrix
is defined as

ρ̂ =
N∑
i=1

pi |Ψi〉〈Ψi| . (2.56)

Given an arbitrary density matrix ρ̂, the expectation value for the result
of a population measurement with regard to a given state |Ψ〉 is

p = 〈Ψ | ρ̂ |Ψ〉 . (2.57)

This probability for finding the system in the state |Ψ〉 now combines
both the inherent quantum mechanical probability due to the projective
measurement, and as well as the simple (classical) lack of knowledge of the
quantum state, e.g. through previous non-recorded measurements of the
system.
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The generalized density matrix has the following properties:

1. ρ̂ is Hermitian and positive-semidefinite.

2. tr [ρ̂] = 1, i.e., the total population is normalized to 1

3. 1
N ≤ tr

[
ρ̂2
]
≤ 1, where N is the dimension of the Hilbert space.

A purity of 1
N is obtained for the completely mixed state ρ̂ = 1

N 1,
whereas a purity of 1 is obtained for any pure state ρ̂ = |Ψ〉〈Ψ|.

With respect to a given basis {|φi〉}, the diagonal elements of the density
matrix give the population in each of the basis states. The off-diagonal
elements ρij are called coherences; they express the phase relationship
between the basis states |φi〉 and |φj〉, assuming both states have non-
zero population. When a coherence is zero, this indicates an incoherent
superposition of those two basis states.

Mathematically, the density matrices are the elements of Liouville space.
The inner product of Liouville space is defined via the Hilbert-Schmidt
product

(ρ̂1, ρ̂2) = tr[ρ̂†1ρ̂2] = tr[ρ̂1ρ̂2] . (2.58)

Thus, the proper mathematical (“induced”) norm of a density matrix is

‖ρ̂‖ =
√

tr ρ̂2 . (2.59)

Since ‖ρ̂‖2 is identical to the purity, only pure states have norm one. This
sometimes causes confusion, as it is common to consider tr[ρ̂] = 1 as the
“normalization condition” for a density matrix. However, this refers to the
normalization of probabilities, not the norm of the state. A basis of Liouville
space is given by all the dyadic products {|φi〉〈φj |} for the eigenstates {|φi〉}
of the associated Hilbert space. The dimension of Liouville space is therefore
N2 if N is the dimension of the Hilbert space. Note, however, that the
matrices |φi〉〈φj | for i 6= j are not themselves density matrices, since they
are not Hermitian.

For a composite system in the Hilbert space H = HA ⊗HB where NA

and NB is the dimension of HA and HB, respectively, an arbitrary density
matrix takes the form

ρ̂ =
NA∑
i,i′=1

NB∑
j,j′=1

ρij,i′j′ |ij〉
〈
i′j′
∣∣ , (2.60)

where {|i〉} and {|j〉} are a basis of HA and HB. The density matrix
formalism allows to describe the state of only subsystem HA as the reduced
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ρ̂SE(0) = ρ̂S(0)⊗ ρ̂E ρ̂SE(t) = Û(t, 0) ρ̂SE(0) Û†(t, 0)

ρ̂S(0) ρ̂S(t) = E(t, 0)ρ̂S(0)

trE trE

unitary evolution

dynamical map

Figure 2.4: Diagram showing how the dynamical map E(t, 0) is obtained by
tracing out the environment from the unitary evolution of the total state. Adapted
from [64].

density matrix

ρ̂A = trB [ρ̂] =
NA∑
i,i′=1

 NB∑
j,j′=1

NB∑
j′′=1

ρij,i′j′
〈
j′′
∣∣ j〉 〈j′ ∣∣ j′′〉


︸ ︷︷ ︸

(ρ̂A)i,i′

|i〉〈i′∣∣ . (2.61)

The result of this partial trace is a state where all knowledge of subsystem
B has been erased. The resulting density matrix ρ̂A will have purity one
only if the subsystems A and B in ρ̂ were not entangled.

Typically, we are interested in some relatively small quantum system (a
qubit, for example), which is not completely isolated from its environment.
While the qubit and the environment are initially in the separable state
ρ̂S ⊗ ρ̂E (otherwise, the qubit would not be considered well-defined as
required by the DiVincenzo criteria), the non-zero interaction between them
will lead to entanglement between system and environment at later times t.
We consider the qubit in this case to be an open quantum system.

In principle, we could simply extend the model to include the environment.
In practice, this is usually not feasible due to the large or infinite number
of degrees of freedom of the environment. However, at least formally, the
time evolution in this composite Hilbert space is unitary with Eq. (2.54),
and the state of the qubit could be obtained by taking a partial trace over
the environment, giving the equation of motion

i~ ∂
∂t
ρ̂S = trE

[
Ĥ, ρ̂

]
. (2.62)

The solution of Eq. (2.62) is called the dynamical map,

ρ̂S(t) = E(t, 0)ρ̂S(0) = trE
[
Û(t, 0) ρ̂SE(0) Û†(t, 0)

]
. (2.63)

The relationship between the unitary evolution in the composite system-
environment Hilbert space and the dynamical map is illustrated in Fig. 2.4.
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Since tracing out the environment can bring the system to a mixed state,
the interaction with the environment is the source of decoherence on the
system.

2.6 Master Equation in Lindblad Form
While the approach of including the environment in the total Hilbert space
is formally correct, an accurate model often has to include so many degrees
of freedom of the environment that an exact treatment of the full system-
environment-dynamics is intractable. Therefore, we must find an effective
description of the system dynamics by itself, i.e., determine an explicit
expression for the dynamical map E(t, 0) that only includes operators acting
on HS .

2.6.1 Kraus Operator Representation
From Eq. (2.63), expanding the state of the environment as

ρ̂E =
NE∑
β=1

λβ |φβ〉〈φβ| , (2.64)

where {|φβ〉} is a complete basis of HE , and writing out the partial trace
yields

ρ̂S(t) =
∑
α

〈
φα
∣∣∣ Û(t, 0)

ρ̂S(0)⊗
∑
β

λβ |φβ〉〈φβ|
 Û†(t, 0)

∣∣∣φα〉
=
∑
αβ

√
λβ
〈
φα
∣∣∣ Û(t, 0)

∣∣∣φβ〉︸ ︷︷ ︸
K̂i(t)

ρ̂S(0)
√
λβ
∗ 〈
φβ
∣∣∣ Û(t, 0)†

∣∣∣φα〉︸ ︷︷ ︸
K̂i(t)†

.
(2.65)

The resulting expression

E(t, 0)ρ̂(0) =
N2
E∑

i=1
K̂i(t)ρ̂SK̂†i (t) (2.66)

for the dynamical map is a Kraus decomposition, the operators K̂i acting
on the elements of HS are the Kraus operators. The only assumption has
been that system and environment are initially separable. If the Kraus
operators fulfill the condition ∑i K̂†i K̂ = 1, the resulting ρ̂(t) has trace 1, as
required for a proper density matrix. The specific Kraus operators defined
in Eq. (2.65) are not the only choice of Kraus operators describing the
dynamical map. Any unitary transformation of the Kraus operators yields
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another set of Kraus operators [5]. The minimum number 1 ≤ K ≤ N2
S of

non-zero Kraus operators that can be found this way is called the Kraus
rank of the dynamical map.

2.6.2 The Quantum Dynamical Semigroup
If the action of the dynamical map is independent from any previous
evolution of the total Hilbert space, a dynamical map where the time
interval t is split into t1 and t2 can be written as

E(t1 + t2, 0) = E(t2, 0)E(t1, 0) (2.67)

This independence property is a strong assumption. Whether it is justified
depends very much on the specific structure of the environment and the
system-environment interaction. An immediate implication is that the
dynamical map is “contracting”, i.e. the distance (distinguishability) between
two initial state never increases. A general dynamical map does not have
an inverse if it induces decoherence. Together with Eq. (2.67), this can
be shown to imply [64] that {E(t, 0)} has the mathematical structure of a
“continuous one-parameter semi-group”.

It follows from the semi-group structure [64] that the dynamical map
can be written in the form

E(t, 0) = e−
i
~Lt , (2.68)

where the factor −i
~ has been factored out of L in order to yield the same

structure as the time evolution operator in Hilbert space in Eq. (2.15). The
equation of motion for the state of the system is then

i~ ∂
∂t
ρ̂S(t) = L [ρ̂S(t)] ≡ lim

t→0

1
t

(E(t, 0)ρ̂S − ρ̂S) . (2.69)

We choose a complete basis {F̂i} of N2
S operators of dimension NS , acting

on the elements of HS , such that tr
[
F̂N2

S

]
= 1 and tr

[
F̂i
]

= 0 for i < N2
S .

These operators can be expanded in the set of Kraus operators, Eq. (2.66).
After some algebraic manipulation [64], the equation of motion can be shown
to take the form

L [ρ̂S ] =
[
Ĥ, ρ̂S

]
+ i

N2
S−1∑
i,j=1

aij

(
F̂iρ̂S F̂†j −

1
2
{

F̂†j F̂i, ρ̂S
})

, (2.70)

where {·, ·} denotes the anti-commutator, and Ĥ is a particular Hermitian
operator constructed from {F̂i}. As a last step, one can once more rotate
the operator basis {F̂i} to a new set {Âk} such that the coefficient matrix aij
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in Eq. (2.70) is diagonalized with eigenvalues γk, and arrive at the master
equation in Lindblad form [94, 95],

L [ρ̂S ] =
[
Ĥ, ρ̂S

]
+ i
∑
k

γk

(
Âkρ̂SÂ†k −

1
2
{

Â†kÂk, ρ̂S
})

. (2.71)

The operators {Âk} are the Lindblad operators describing the dissipative
process. In comparison with the unitary Liouville-von-Neumann equa-
tion (2.54), we see that we have obtained an additional dissipator D that
captures the non-unitary effects of the system-environment interaction,

i~ ∂
∂t
ρ̂S = L [ρ̂S ] =

[
Ĥ, ρ̂S

]
+ iD [ρ̂S ] . (2.72)

Each Lindblad operator Âk can be interpreted as a decoherence channel,
and the associated γk is the rate at which this channel acts. It is common
to absorb γk in the Lindblad operators, and to write the dissipator as either

D [ρ̂] =
∑
k

Âγk ρ̂SÂ†γk −
1
2
(

Â†γk Âγk ρ̂S + ρ̂SÂ†γk Âγk
)

(2.73)

with Âγk = √γkÂk, or

D [ρ̂] =
∑
k

2Â γk
2
ρ̂SÂ†γk

2
− Â†γk

2
Â γk

2
ρ̂S − ρ̂SÂ†γk

2
Â γk

2
(2.74)

with Â γk
2

=
√

γk
2 Âk.

2.6.3 Decay and Dephasing
While the derivation of the master equation from the semi-group properties of
the dynamical map yields the general structure of the dissipator, it does not
provide any practical way of obtaining the Lindblad operators Âi. However,
we can adopt a phenomenological perspective to determine the Âi that are
associated with decoherence channels. In a system with the eigenbasis {|i〉},
we consider the dissipator in Eq. (2.73) and two fundamental decoherence
processes:

• Âγ1 = √γ1 |0〉〈1|. This is a jump operator from level |1〉 to |0〉,
representing a decrease in the energy of the system.

• Âγ∗2 =
√

2γ∗2 |1〉〈1|. The time evolution under this projector does not
change the energy of the system, but induces a phase on the level |1〉.

Inserting Âγ1 into Eq. (2.71) with Ĥ = 0 and solving the resulting set of
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coupled differential equations for all entries of ρ̂(t) = ρ̂S(t) yields

ρ00(t) = ρ00(0) +
(
1− e−γ1t

)
ρ11(t) , (2.75a)

ρ11(t) = ρ11(0) e−γ1t , (2.75b)

ρ1,j 6=1(t) = ρ1j(0) e−
γ1
2 t , (2.75c)

ρi6=1,1(t) = ρi1(0) e−
γ1
2 t , (2.75d)

with all other entries remaining constant. Thus, the channel results in an
exponential decay of population from level |1〉 to level |0〉 with a decay
rate of γ1. This incoherent population transfer is associated with the loss
of phase information, described by Eqs. (2.75c, 2.75d), the decay-induced
dephasing.

Similarly, for Âγ2 , we obtain

ρ1,j 6=1(t) = ρ1j(0) e−γ2t , (2.76a)
ρi6=1,1(t) = ρi1(0) e−γ2t . (2.76b)

i.e., an exponential decrease in all coherences related to level |1〉, without
any effect in the populations. We therefore label this dissipative channel
pure dephasing.

For the example of a two-level system starting in the initial state |Ψ〉 =
1√
2 (|0〉+ |1〉), the time evolution for the combination of both of these

channels reads

ρ̂(t) = 1
2

(
2− e−γ1t e−( γ1

2 +γ2)t

e−( γ1
2 +γ2)t e−γ1t

)
. (2.77)

Borrowing from the terminology of nuclear magnetic resonance (NMR), we
introduce the longitudinal and transversal relaxation times T1 and T2 as
the characteristic time of the exponential decline of the population and
coherences, respectively [96],

T1 = 1
γ1
, T2 = 1

γ1
2 + γ2

. (2.78)

For a spin in the Bloch sphere, see Fig 2.1, T1 is measured from the decay
of the component of the spin in the direction of the magnetic field (in the
direction of the z-axis), whereas T2 is measured as the decay of the spin-
component perpendicular to the magnetic field. With the pure-dephasing
time

T ∗2 = 1
γ2
, (2.79)

the relationship
1
T2

= 1
2T1

+ 1
T ∗2

(2.80)
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holds. Even outside of NMR, it is extremely common to find the decoherence
of a quantum system characterized in terms of T1 and T ∗2 times.

In the context of this thesis, the terms “decoherence” and “dissipation”
are used interchangeably to refer to any process that lowers the purity of
a quantum state. Especially in NMR, a distinction between “decoherence”
and “dissipation” is sometimes made, where the term “dissipation” indicates
that energy is exchanged with environment, whereas “decoherence” strictly
refers to the loss of phase information.

2.6.4 A Microscopic View
The master equation in Lindblad form has been derived using only the
mathematical property of the dynamical semigroup defined in Eq. (2.67).
What does the requirement that the dynamical maps over two time intervals
are independent mean physically? Is there a general method for obtaining
the Lindblad operators? These questions can be answered by a rigorous
derivation of the equation of motion from a microscopic model of the system
and the environment. We consider the full Hamiltonian Ĥ acting on the
elements of HSE ,

Ĥ = ĤS + ĤE + ĤSE , (2.81)

where ĤS is the Hamiltonian of only the system, ĤE is the Hamiltonian of
only the environment, and ĤSE models the system-environment interaction.
Based on the definition of the dynamical map in Eq. (2.63) and a series of
approximations, a master equation of Lindblad form (2.71) for ρ̂S(t) can be
obtained [64, 97]. A review of the steps typically taken in that derivation
illuminates the underlying physical assumptions of the master equation in
Lindblad form:

1. Separability. The system and the environment must initially be in a
separable state, ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0).

2. Weak system-environment coupling. A weak coupling allows for a per-
turbative approach, where the Liouville-von Neumann equation (2.54)
is integrated once and inserted into Eq. (2.62) to give the first order
equation (in the interaction picture)

∂

∂t
ρ̂S(t) = −

∫ t

0
trE

[
ĤSE(t),

[
ĤSE(t′), ρ̂SE(t′)

]]
dt′ . (2.82)

3. Born approximation. As a further consequence of the weak system-
environment coupling, and if the environment is much larger than the
system, the environment will remain in its original state. The total
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state is separable at all times,

ρ̂SE(t) ≈ ρ̂S(t)⊗ ρ̂E , ρ̂E ≡ ρ̂E(0) . (2.83)

4. Time locality. Under the assumption that the environment retains no
memory, it is valid to say that past states have no influence on the
dynamics and set ρ̂S(t′) = ρ̂S(t) in Eq. (2.82). The equation of motion
obtained thereby is known as the Redfield equation. It is possible to
derive a master equation of a very similar form to Eq. (2.71), but
with time-dependent and possibly negative decay rates [97].

5. Markov approximation. Correlations in the environment are assumed
to decay much faster than the time scale on which the system evolves.
Mathematically, this allows to take the limit of the integration to
infinity. This is a further “no memory” effect. In combination, all of
the above approximations yield the Born-Markov master equation,

∂

∂t
ρ̂S(t) = −

∫ ∞
0

trE
[
ĤSE(t),

[
ĤSE(t− s), ρ̂S(t)⊗ ρ̂E

]]
ds , (2.84)

with s ≡ t− t′.

6. Secular approximation. In order to arrive from Eq. (2.84) to the
master equation in Lindblad form, fast-rotating terms in the interac-
tion frame [64] must be negligible, in the sense of the rotating wave
approximation outlined in appendix B.

A system for which the Born-Markov approximation is particularly well
fulfilled is an atom interacting with a quantized electromagnetic field [64, 98].
For the specific example of a two-level system, the system and environment
are modeled as [97]

ĤS = ~ω0
2 σ̂z , ĤE =

∑
k

~ωkb̂†kb̂k , (2.85)

and the interaction between system and environment as

ĤSE =
∑
k

(
gkb̂k + gkb̂†k

)
(σ̂+ + σ̂−) , (2.86)

where σ̂z, σ̂+, and σ̂− are the Pauli matrices defined in Eq. (2.17) and
Eq. (2.35), ω0 is the energy spacing in the two-level system, ωk is the
energy of mode k of the electromagnetic field, and gk is the coupling
strength between the atom and the environment. The derivation of the
master equation in Lindblad form, using the approximations listed above,
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yields [64]

∂

∂t
ρ̂S(t) = γ0(M + 1)

(
σ̂−ρ̂S(t)σ̂+ −

1
2 σ̂+σ̂−ρ̂S(t)− 1

2 ρ̂S(t)σ̂+σ̂−

)
+

+ γ0M

(
σ̂+ρ̂S(t)σ̂− −

1
2 σ̂−σ̂+ρ̂S(t)− 1

2 ρ̂S(t)σ̂−σ̂+

)
,

(2.87)

with the decoherence rate γ0 and M being the expectation value for the
number of photons in the field. At non-zero temperature, M > 0, and
Eq. (2.87) describes the processes of spontaneous emission, stimulated
emission, and absorption. At zero temperature, M = 0, only spontaneous
emission remains, taking a form identical to the phenomenological decay in
section 2.6.3.

All dissipation in the following chapters will be assumed to be Markovian,
allowing the dynamics to be modeled by Eq. (2.71). This does not imply
that non-Markovian system-bath interactions do not also commonly occur.
Markovianity implies that information that has passed from the system to
the environment is lost, whereas in a non-Markovian setting, there may
be a backflow of information [99, 100], opening up additional potential for
control. However, the treatment of non-Markovian dynamics is beyond the
scope of this thesis; we will briefly return to it in the outlook in chapter 8.

2.7 Implementing Quantum Gates in Open
Quantum Systems

For some quantum control tasks, the presence of decoherence is not detri-
mental and can even be exploited. For example, for a number of biological
processes such as photosynthesis and the “chemical compass” in the retina
of birds, the role of quantum effects have been demonstrated, with some
evidence that these processes are assisted by noise [101]. Another typi-
cal example is cooling, where dissipation is used to remove entropy from
the system to the environment [102]. A similar concept is employed for
the so-called “quantum governor” [66], where the system is stabilized by
transferring fluctuations to the environment.

For the implementation of quantum gates, however, the presence of
(Markovian) decoherence is always pernicious, since by definition, the desired
process is unitary. The goal is therefore to avoid dissipative processes as
much as possible. If suitable symmetries are present in the system, it may
be possible to find decoherence free subspaces [103] in which a qubit can be
encoded; an approach that has been verified experimentally [104]. In the
context of NMR, dynamical decoupling [105] is a popular method, where a
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series of short pulses are applied to the system. The implementation of fast
gates is an obvious requirement in open quantum systems; by operating at
the quantum speed limit [69, 106, 70, 71, 72], the effects of decoherence are
minimized. This makes the use of numerical methods of optimal control
especially important, as they are able to reach this limit [107, 73]. If the
error due to decoherence in the gate implementation can be kept below a
certain threshold of 10−3–10−4, depending on the system, quantum error
correction can be applied [108, and references therein]. The basic idea of
quantum error correction is to encode the information of one logical qubit
in a system of multiple physical qubits.

In an open quantum system, the gate fidelity defined in Eq. (2.43) is no
longer a well-defined quantity, since instead of a time evolution operator
Û(T, 0), the dynamics is now described by the dynamical map E(T, 0)ρ̂. The
average fidelity [109]

Favg =
∫
〈Ψ|Ô†E(T, 0)[|Ψ〉〈Ψ|]Ô|Ψ〉 dΨ , (2.88)

is a measure for how much the dynamical map corresponds to a desired
unitary gate Ô. It is defined via the Haar measure that averages over all
possible states. In practice, the gate fidelity can be evaluated as [110]

Favg = 1
N(N + 1)

N∑
i,j=1

(
〈ϕi|Ô

†E(T, 0) [|ϕi〉〈ϕj |] Ô|ϕj〉+

+ tr
[
Ô |ϕi〉〈ϕi| Ô

†E(T, 0) [|ϕj〉〈ϕj |]
])

,

(2.89)

where N is the dimension of the Hilbert space, and {|ϕi〉} are the logical
basis states. Since the average fidelity is more general than the gate fidelity
in Eq. (2.43), it can also be used in the unitary case, where the dynamical
map is given by

EU (T, 0) [|Ψ〉〈Ψ|] = Û(T, 0) |Ψ〉〈Ψ| Û†(T, 0) . (2.90)

Specifically for a two-qubit gate with unitary evolution, the average gate
fidelity can also be written as

Favg = 1
20

(∣∣∣ tr [Ô†Û] ∣∣∣2 + tr
[
Ô†ÛÛ†Ô

] )
. (2.91)

In the following chapters, we will consider several functionals that may be
used to to steer the optimization of a quantum gate. While these functionals
have advantages over Eq. (2.88) for the purpose of optimization, they are
not easily comparable. The average fidelity therefore serves as a well-defined
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and experimentally accessible benchmark that can be used to characterize
the result of an optimization, independent of the optimization functional.





3
Numerical Methods in Quantum

Information Processing

The design of robust quantum gates under realistic conditions provides
considerable numerical challenges. Even with a focus on two-qubit gates,
it is generally not sufficient to model the system in the four-dimensional
logical subspace spanned by the states {|00〉, |01〉, |10〉, |11〉}. For an
accurate description of the underlying physical system, further degrees of
freedom need to be taken into account. For example, for the case of trapped
Rydberg atoms in chapter 4, the gate mechanism makes use of a Rydberg
level |r〉 and an additional intermediate level |i〉, outside of the logical
subspace, in order to generate the entanglement necessary for a two-qubit
gate. Therefore, the minimum dimension of the total Hilbert space grows to
16. More generally, for trapped atoms, it may be necessary to also include
their vibrational degree of freedom, which may further enlarge the Hilbert
space by a factor of several hundred [73, 80]. For superconducting qubits
discussed in chapters 5–7, the qubits are weakly anharmonic ladders, such
that the population of higher levels cannot be neglected. Furthermore, the
interaction between the qubit is via a transmission line resonator, which
can receive significant excitation. With nq levels per qubit and nc levels for
the resonator having to be taken into account, the total dimension of the
Hilbert space n2

qnc is generally at least several hundred.
The problem is exacerbated when taking into account dissipation, such

that the system has to be modeled as a density matrix in Liouville space
that scales quadratically relative to the underlying Hilbert space. Hilbert

43
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space dimensions of several hundreds are numerically very manageable. The
corresponding Liouville space dimension however, approaching 105, would
push the boundaries of typically available computational resources. There-
fore, it is vital to employ efficient data structures and algorithms that are
problem-specific to the simulation of quantum dynamics and control, using
highly optimized implementations. In the context of the work presented
in this thesis, considerable effort has been spent to implement algorithms
for the efficient representation, simulation, and optimization of both closed
and open quantum systems, as part of the QDYN Fortran 90 library. This
chapters reviews some of the key techniques that have been implemented
and used in obtaining the results in chapters 4–7.

3.1 Numerical Representation of Quantum Systems
At the heart of any numerical treatment lies the ability to model the physical
system in an optimal mathematical representation, and to translate this
mathematical model into efficient data structures. It is important to realize
how intimately efficient algorithms depend on the underlying data structures,
which must therefore be designed with great care.

The first step in modeling a physical system numerically is to discretize it.
In practice, this means choosing a suitable representation for the Hamiltonian
(i.e., a set of basis functions). Naturally, the number of degrees of freedom
should be as small as possible, while still providing an accurate description.

If only bound states of the Hamiltonian up to some maximum energy are
relevant, an energy representation

〈
φi
∣∣∣ Ĥ ∣∣∣φj〉 is an obvious choice, where

{|φ1〉, . . . , |φN 〉} is the set of the first N eigenstates of the drift Hamiltonian.
The resulting matrix representation is almost always very sparse. Consider
a typical Hamiltonian of the form

Ĥ(t) = Ĥ0 + ε(t)Ĥ1 . (3.1)

The drift Hamiltonian Ĥ0 is entirely diagonal, since Ĥ(t) is represented in the
eigenstates of Ĥ0, but also the control Hamiltonian Ĥ1 will generally have a
sparse structure. For example if Ĥ1 is the dipole operator that describes
the interaction of an atom with an electromagnetic field, see appendix A,
the non-zero elements in Ĥ1 are determined by the selection rules. Sparsity
is further increased in a composite system,

Ĥ = Ĥ1 ⊗ 1 + 1⊗ Ĥ1 + ĤI , (3.2)

where Ĥ1 is the Hamiltonian for each of the two subsystems, assuming that
the interaction Hamiltonian ĤI is also sparse. Data structures for storing
sparse matrices are well-established [111, 112], and are at least partly
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available in standard numerical libraries such as LAPACK [113]. Where
these existing data structures are too general, it is advisable to implement
data structures that reflect the sparsity of the representation to the greatest
extent possible. The possibility to efficiently apply a Hamiltonian to a wave
function is key to any further numerical methods of time propagation or
optimal control.

The same sparsity argument applies equally in Liouville space. Given
a master equation (2.71) in Lindblad form, the commutator [Ĥ, ρ̂] can be
efficiently calculated if Ĥ is stored in a sparse matrix format. Likewise, the
Lindblad operators {Âi} or alternatively the entire dissipator LD can be
stored as a sparse matrix.

While the energy representation is very straightforward, it is neither the
only nor generally the most efficient choice. In the standard example of the
harmonic oscillator [63],

Ĥho = ~ω
(

â†â + 1
2

)
, (3.3)

â can be written in either energy representation (truncated to N eigenstates)
or coordinate representation,

â =
N∑
n=0

√
n |n− 1〉〈n| =

√
m ~ω

2

(
x̂ + ip̂

m ~ω

)
, (3.4)

leading to

Ĥho =
N∑
n=0

~ω
(
n+ 1

2

)
|n〉〈n| = p̂2

2m + mω2

2 x̂2 . (3.5)

While the energy representation is already discrete and finite, by choice of
the truncated set of energy basis functions {|0〉, . . . , |N〉}, the coordinate
representation must still be discretized for numerical use. That is, we
must also select a finite set of basis functions in which to represent the
Hamiltonian. The Fourier method [114, 9] defines a pair of such sets. One
set consists of the “spectral” basis of plane waves, |n〉 = |eiknx〉, the other
of a basis of associated “pseudo-spectral” functions [9, 80]. In practical
terms, the representation of a state in the pseudo-spectral basis is simply
the vector (Ψ(xi), . . . ,Ψ(xN )) for xi on an equidistant grid. The operator
x̂2 in this basis is the diagonal matrix x̂2 = ∑

n x
2
n |n〉〈n|, whereas p̂2 is a

dense matrix. The representation in the plane wave basis is the Fourier
transform of Ψ(xi), and consequently p̂2 is diagonal, whereas x̂2 is dense.
This suggests to split the Hamiltonians into two terms, the kinetic operator
T̂ = p̂2/(2m) and the harmonic potential V̂ = 1

2mω
2x̂2 and to store each in

the representation in which it is sparse (i.e. diagonal). In the application
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of the total Hamiltonian, the state vector or density matrix must then
be converted from one representation to the other, which can be done
efficiently using the fast-Fourier-transform (FFT), cf. appendix E. The
necessary number of grid points in x and p is completely determined by the
phase space volume [xmin, xmax]× [pmin, pmax] in which the dynamics take
place, see appendix E. The Fourier representation fills this volume with the
minimal number of equally distributed points.

In the example of the harmonic oscillator, the Fourier representation
only becomes useful if the system is driven with a term ε(t)(â + â†). In
this case, the energy representation becomes banded instead of diagonal,
whereas the Fourier representation remains diagonal. Which representation
is more efficient then depends on the maximum excitation; for n > 32,
the Fourier grid is generally more efficient. However, in the description
of molecular dynamics, where the method was developed [114, 115], the
Fourier representation is the default choice. There, the Born-Oppenheimer
approximation yields energy surfaces V̂BO(R) for each of the electronic
degrees of freedom of a diatomic molecule. For two electronic surfaces, the
Hamiltonian might be written as e.g.

Ĥ =
(

T̂(k) + V̂1(R) µ(R)ε(t)
µ̂(R)ε(t) T̂(k) + V̂2(R)

)
. (3.6)

With the spatial degree of freedom represented on a Fourier grid with NR

points, Ĥ is a sparse matrix of dimension 2NR, and can be applied efficiently
by storing only the vectors V1(R), V2(R), and µ(R) in the pseudo-spectral
representation and the vector T (k) ∝ k2 for the kinetic operator in the
plane wave representation. For a more realistic example, see Ref. [6].

A common situation for such molecular systems is that the phase space
is used very unevenly, requiring an excessive number of points to sample it
evenly in the Fourier representation. This issue can be addressed by using
a mapped grid [116, 117, 118, 119, 120], where a coordinate transformation
is used to mold the used phase space volume into a square.

In some dynamical problems such as the transport of trapped ions, the
wave packet is within in a small region of phase space at every instant, but
moves over large distances (and values of velocity) over time. This situation
is efficiently modeled with a moving grid [121, 7], where the phase space
volume [xmin(t), xmin(t)+∆x]× [pmin(t), pmin(t)+∆p] is moved dynamically
along with the wave packet.

The pseudo-spectral basis functions associated with the Fourier grid
are not the only example of a collocation method, where the expansion
coefficients of a state are the values of the wave functions Ψ(xj) for points
xj . However, the Fourier grid is the only choice for which the xj are
equidistant. Generally, the spectral basis functions should be chosen such
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that they diagonalize the kinetic operator; e.g. for spherical symmetry with
the magnetic quantum number m = 0, these would be Legendre polynomials.
The general use of spectral methods has an extensive body of work behind
it [122] and is central to the efficient numerical treatment of molecular
dynamics.

3.2 Simulation of Quantum Dynamics
Once the application of the Hamiltonian or Liouvillian to a state has been
realized, the next step is to simulate the dynamics of the quantum system.
This usually means solving the time-dependent Schrödinger equation (2.16)
or the Liouville-von Neumann equation (2.72).

There are two possible approaches to obtaining a solution. The first
is to simply take the equation of motion and apply one of the generic
numerical methods for solving ordinary differential equations (ODEs), like
one of the Runge-Kutta (RK) methods [123, 124]. This approach has the
benefit that ODE solvers such as RK45 are readily available in numerical
libraries. They are also very flexible with respect to the equation of motion,
as long is it is reasonably well-behaved [123]. For example, instead of the
Schrödinger equation, the non-linear Gross-Pitaevskii-equation describing a
Bose-Einstein condensate [125], can easily be solved. However, general ODE
solvers will lack in numerical efficiency and, most importantly, accuracy.

The alternative approach is to solve the equation of motion analytically,
and then to evaluate that solution numerically. In this way, results of
arbitrary precision can be obtained, with the obvious caveat that the
propagation scheme will be specific to a particular equation of motion and
its solution.

The Schrödinger equation for a time-independent Hamiltonian has the
solution

|Ψ(T )〉 = Û(T, 0) |Ψ(0)〉 = e−
i
~ ĤT |Ψ(0)〉 , (3.7)

For time-dependent Hamiltonians, we approximate Ĥ(t) as piecewise con-
stant on a time grid with time step dt. Then, the total time evolution
operator is the product of the time evolution operators at each time step,

Û[T, 0] =
nt−1∏
i=1

Û(ti + dt, ti)︸ ︷︷ ︸
≡Ûi

=
nt−1∏
i=1

exp
[
− i

~
Ĥ
(
ti + dt

2

)
︸ ︷︷ ︸

≡Ĥi

dt

]
. (3.8)

The time step dt must be chosen sufficiently small that this is a good approx-
imation; in practice, convergence is checked by verifying that the numerical
results remain stable within a desired precision when dt is decreased. The
number of necessary time steps can be reduced significantly if a rotating



48 3. Numerical Methods in Quantum Information Processing

wave approximation (RWA) is justified. As shown in appendix B, the RWA
allows to eliminate fast oscillations in the pulse, leaving only a slowly varying
shape.

A naive way of evaluating e− i
~ Ĥi dt is to diagonalize the Hamiltonian and

use the eigendecomposition

Ĥi = Ŵi


λ

(i)
1

. . .
λ

(i)
N

 Ŵ†i , (3.9)

where Ŵi contains the eigenvectors of Ĥi as columns, to write the propagation
step as

e−
i
~ Ĥidt |Ψ〉 = Ŵi


e− i

~λ
(i)
1 dt

. . .
e− i

~λ
(i)
N dt

 Ŵ†i |Ψ〉 . (3.10)

This “exact” exponentiation is suitable for Hilbert spaces of trivially small
dimension < 10. Since diagonalization scales as N3 with the dimension N
of the matrix [126], full diagonalization at every time step quickly becomes
numerically infeasible. Moreover, Ĥ and Ŵ must be constructed as dense
matrices.

For a system of non-trivial size, exp[− i
~ Ĥdt] is evaluated by expanding

the exponential in a polynomial series,

e−
i
~ Ĥ dt |Ψ〉 ≈

N−1∑
n=0

anPn(Ĥ) |Ψ〉 . (3.11)

where Pn(Ĥ) is a polynomial of degree n and {an} are the expansion
coefficients. Applying Pn(Ĥ) to |Ψ〉 then simply means repeated applications
of Ĥ. For this reason, an efficient propagation relies on the proper use of
sparsity in storing the Hamiltonian and spectral methods such as the Fourier
grid.

The idea of evaluating the exponential as a polynomial series is already
presupposed by the very definition of the exponential of an operator,

exp[Â] ≡
∞∑
n=0

1
n! Ân . (3.12)

However, this expansion converges particularly slowly and is numerically
unstable [127]. Thus, it is not suitable for time propagation. Instead, a
polynomial basis must be chosen such that Eq. (3.11) converges quickly and
can be truncated as early as possible.
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3.2.1 Chebychev Propagation

For a function f(x) with x ∈ [−1, 1], it can be shown [128] that the fastest
converging polynomial series is the expansion in Chebychev polynomials

Pn(x) = cos(nθ); θ = arccos(x) . (3.13)

The function f(x) must be sampled at N discrete points {xk} that are either
the roots or the extrema of the N ’th Chebychev polynomial; the expansion
coefficients are

an = 2− δn0
N

N−1∑
k=0

f(xk)Pn(xk) . (3.14)

When using the Chebychev expansion for propagation, the requirement
that the argument of f(x) must be real translates into Ĥ being Hermitian.
Secondly, to account for the requirement that x ∈ [−1, 1], the Hamiltonian
must be normalized as [114, 9, 129]

Ĥnorm = 2 Ĥ− Emin 1

∆ − 1 , (3.15)

where ∆ = Emax − Emin is the spectral radius and Emax and Emin are the
smallest and largest eigenvalue.

For f(Ĥ) = exp
[
− i

~ Ĥ dt
]
, the series converges for N being a small

multiple of bαc with α = ∆
2 dt. In this case, the expansion coefficients can

be calculated analytically as [127]

an = (2− δn0)e−
i
~(∆

2 +Emin) dtJk(α) , (3.16)

where Jk(α) is the Bessel function of first kind. In order to calculate the
propagated state,

|Ψ〉 = e−
i
~ Ĥ dt |Ψ0〉 =

∑
n

an Pn(−iĤnorm) |Ψ0〉︸ ︷︷ ︸
≡|Φn〉

, (3.17)

the series is truncated as soon as |ak| is below machine precision. Since
both Ĥnorm and |Ψ0〉 are normalized, this guarantees that the entire term in
the series is below machine precision as well. Eq. (3.17) is evaluated using
the recursive relationship of the Chebychev polynomials [114, 9, 129],

|Φ0〉 = |Ψ0〉 , (3.18)
|Φ1〉 = −iĤnorm |Φ0〉 , (3.19)
|Φn〉 = −2iĤnorm |Φn−1〉+ |Φn−2〉 . (3.20)

The full algorithm is summarized in appendix F as Algorithm 2.
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The propagator is stable as long as the spectrum of the Hamiltonian
is in the range [Emin, Emin + ∆] that is used to obtain the Chebychev
coefficients. Therefore, for propagation on a time grid with a Hamiltonian
of the form Ĥ = Ĥ0 + ε(t)Ĥ1, the Chebychev coefficients can be calculated
once and then re-used for every propagation step. A good heuristic in
this case is to choose a spectral radius that includes the spectrum of both
Ĥmax = Ĥ0 + maxt ε(t)Ĥ1, and Ĥmin = Ĥ0 + mint ε(t)Ĥ1.

Still, it is essential to have a good approximation for the spectral range
of a given Hamiltonian. Specifically for molecular dynamics, estimating
the spectral range from the extrema of the potentials and the kinetic
energy gives sufficiently accurate results [127]. More generally, a very good
approximation of the minimum and maximum eigenvalue of an operator can
be obtained using the Arnoldi method. Starting from a random state |Ψ0〉,
the Krylov space is built by repeatedly applying Ĥ and orthonormalizing
the obtained states [130, 115]. The projection of the Hamiltonian into this
Krylov space yields a Hessenberg matrix, whose maximum and minimum
eigenvalues converge towards the maximum and minimum eigenvalues of the
Hamiltonian. The algorithm is detailed in appendix F. For each iteration j,
the spectral range is calculated from the eigenvalues obtained in line 10 of
Algorithm 5. The iteration continues until the result is converged to some
predefined precision.

The Chebychev method can also be applied to other equations of motion,
as long as an analytical solution can be derived and expanded in Chebychev
polynomials. The expansion coefficients in this case cannot be expressed in
Bessel functions, but must be derived using a cosine transform, as outlined
in appendix E. In this way, a Chebychev propagator for the inhomogeneous
Schrödinger equation has been derived [129].

For a truly time-dependent Hamiltonian that is not well-approximated
as piecewise constant the formal solution of the Schrödinger equation (2.16)
is |Ψ(t)〉 = Û(t, 0)|Ψ(0)〉, with

Û(t, 0) = T exp
[
− i
~

∫ t

0
Ĥ(t′) dt′

]
, (3.21)

where T represents the time ordering operator. This can be rewritten as
the solution to an inhomogeneous Schrödinger equation [131], and thus also
be evaluated using the inhomogeneous Chebychev propagator.

In principle, the solution to the Liouville-von Neumann equation (2.72)
takes the same form as the time evolution operator in Hilbert space, i.e.,

ρ̂(t) = e−
i
~Ltρ̂(0) . (3.22)

However, unlike the Hamiltonian, the Liouvillian is generally not a Hermitian
operator, except when there is no dissipator, i.e. L[ρ̂] = [Ĥ, ρ̂]. In this case,
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the spectrum of L is in the interval [−∆,+∆], where ∆ is the spectral radius
of Ĥ.

3.2.2 Newton Propagation
In the general case of a dissipative Liouvillian, instead of a Chebychev
expansion, an expansion into Newton polynomials can be used. For a
general function f(z) with z ∈ C, the expansion in Newton polynomials
Rn(z) reads

f(z) ≈
N−1∑
n=0

anRn(z) , Rn(z) =
n−1∏
j=0

(z − zj) , (3.23)

for a set of sampling points {zj} at which the interpolation is exact. The
coefficients are defined as the divided differences [132],

a0 = f(z0) , (3.24a)
a1 = f(z1)− f(z0) , (3.24b)

an =
f(zn)−∑n−1

j=0 aj
∏j−1
k=0 (zn − zk)∏n−1

j=0 (zn − zj)
. (3.24c)

For solving the Liouville-von Neumann equation, f(z) = e−iz dt, where the
argument z is L/~. Thus, the propagation is written as

ρ̂ = e−
i
~L dt ρ̂0 ≈

N−1∑
n=0

an (L − zn1)︸ ︷︷ ︸
≡pN−1(L)

ρ̂0 , (3.25)

where the polynomial is evaluated through repeated application of Eq. (2.72).
The central issue for obtaining a fast-converging series is a proper choice

of the sampling points {zj}. The fastest convergence results from using
the complex eigenvalues of L [133]. However, the exact eigenvalues of the
Liouvillian are not readily available. More generally, arbitrary points from
the spectral domain of L can be used as sampling points.

A widely used method is to estimate the spectral domain and to encircle
it with a rectangle or ellipse [134, 132, 135]. Then, a large number of
expansion coefficients are calculated from sampling points on that boundary.
The same coefficients are used for the propagation of all Liouvillians on the
time grid under the assumption that they all fit into the same encirclement.
The series is truncated as soon as convergence is reached. This is similar
to the method employed for the Chebychev propagator, where a set of
coefficients is calculated once and then used for the propagation of any
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Hamiltonian that is within the same spectral range.

A middle path between the exact eigenvalues of L and the crude encir-
clement of the spectral domain is the use of the Krylov method to obtain
approximate eigenvalues. The same method was already employed to es-
timate the spectral radius for the Chebychev propagator. The Arnoldi
algorithm 5 in appendix F for Â = L and using ~v = ρ̂ as a starting vector
yields a set of approximate eigenvalues of L, as well as a Hessenberg matrix
Ĥ that is the projection of L into the Krylov subspace, and the set of
Arnoldi vectors that span that subspace. Instead of using L as the argument
of the polynomial pN−1, the Hessenberg matrix may be used. If V̂N is the
transformation matrix between the full Liouville space and the reduced
Krylov space, consisting of the Arnoldi vectors as columns, the propagation
is evaluated using

Lρ̂ ≈ V̂N pm−1(Ĥ) V̂ †N ρ̂0 . (3.26)

Assuming N is much smaller than the full dimension of the Liouville space,
most of the numerical effort is in the Arnoldi algorithm, in constructing the
Krylov space.

However, even for moderate values of N (typically on the order of 100),
the Arnoldi algorithm can require prohibitive amounts of memory. This is
because a full set of N Arnoldi vectors, each of the dimension of the Liouville
space, need to be stored. To counter this problem, an iterative scheme has
been developed [136]. Instead of performing the Arnoldi algorithm to a high
order N , until convergence is reached in the propagation, we stop at some
small order m < 10. This gives a first approximation to the propagated
density matrix,

ρ̂(1) = p
(0)
m−1(L)ρ̂0 =

m−1∑
n=0

anRn(L)ρ̂0 . (3.27)

The idea is now to iteratively add remaining terms to the Newton series
in chunks of size m, retaining all coefficients and sampling points, but
restarting the Arnoldi procedure in every iteration.

Adding the next m terms to Eq. (3.27) yields

ρ̂(2) = ρ̂(1) +
2m−1∑
n=m

anRn(L)ρ̂0

= ρ̂(1) +
(
m−1∑
n=0

am+nR
(1)
n (L)

)
︸ ︷︷ ︸

≡p(1)
m−1

(
R(0)
m (L)ρ̂0

)
︸ ︷︷ ︸

≡σ̂(1)

,
(3.28)
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with

R(0)
n (L) =

n−1∏
j=0

(L − zj1), R(1)
n (L) =

n−1∏
j=0

(L − zn+j1) . (3.29)

That is, the terms in Rn(L) already known from the calculation of ρ̂(1)

have been pulled out, and yield a new “starting vector” σ̂(1), which is the
argument to a Newton series of only m new terms. The new sampling
points on which the R(1)

n are evaluated are obtained by applying the Arnoldi
procedure to σ̂(1). The Newton coefficients continue recursively from the
previous restart. The third iteration yields

ρ̂(3) = ρ̂(2) +
(
m−1∑
n=0

a2m+nR
(2)
n (L)

)
︸ ︷︷ ︸

≡p(2)
m−1

(
R(1)
m (L)σ̂1

)
︸ ︷︷ ︸

≡σ̂(2)

. (3.30)

The Newton propagator continues, adding the m terms evaluating

p
(s)
m−1(L)σ̂(s) =

m−1∑
n=0

asm+n

n−1∏
k=0

(L − zsm+k1) σ̂(s) (3.31)

with
σ̂(s) = p

(s−1)
m−1 σ̂

(s−1) (3.32)

at every restart iteration. The complete algorithm is listed in appendix F.

In the implementation of the algorithm, there are two details that need to
be taken into account for numerical stability. First, the denominator of the
divided differences in Eq. (3.24) may become extremely small if consecutive
sampling points are close to each other. This can be addressed by reordering
the points such that the denominator in the divided differences is maximized.
This process is called Leja ordering [137]. The reverse problem that the
sampling points are too far apart, causing an underflow in the calculation
of coefficients can be avoided by normalizing the Liouvillian as

L̃ = 1
ρ

(L − c) , (3.33)

where c is an estimate for the center of the spectrum of L, and the eigenvalues
are roughly contained in a radius ρ around c. These values can be estimated
from the sampling points obtained in the first iteration of the Newton
propagator. The normalization of the Liouvillian is in some sense similar
to the normalization of the Hamiltonian in the Chebychev propagator, but
it is crucial there since the Chebychev polynomials are only defined in the
domain [−1, 1]. For the Newton propagator, the normalization is only for
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numerical stability.
The primary use for the Newton propagator is to solve the Liouville-von

Neumann equation with a dissipative term. However, it can also be used to
solve the Schrödinger equation with a non-Hermitian Hamiltonian. This
is sometimes used as an ad-hoc model for spontaneous decay, avoiding the
significant overhead incurred by modeling the system properly in Liouville
space. As seen in section 2.6.3 of chapter 2, spontaneous decay from a level
|n〉 results in the population of that level decreasing proportionally to e−γ1t.
To obtain the same decay behavior in Hilbert space, the complex amplitude
an of the level |n〉 must decay at a rate of γ1

2 , since the population of |n〉
is given by |an|2. This is achieved by adding a non-Hermitian term to the
Hamiltonian, resulting in

Ĥγ = Ĥ− iγ1
2 |n〉〈n| . (3.34)

Propagation with such a Hamiltonian does not conserve the norm of |Ψ〉;
the population that has decayed simply vanishes. Specifically, it is not
added to the state to which |n〉 decays, since the incoherent superposition
of states cannot be modeled in Hilbert space. Nonetheless, a non-Hermitian
Hamiltonian can be a useful way to determine e.g. how much the fidelity of
a quantum operation is affected if spontaneous decay is taken into account.

3.3 Optimization Methods

3.3.1 Optimization of Two-Qubit Quantum Gates

Building upon the ability to simulate the dynamics of a quantum system,
the final step is to apply the methods of numerical optimal control (OCT),
as introduced in chapter 1. The focus of this thesis is the realization of
two-qubit quantum gates Ô.

For a quantum gate to be successfully implemented at time T , all basis
states of the two-qubit logical subspace must evolve according to

Û(0, T ) |k〉 != eiφÔ |k〉 , |k〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉} , (3.35)

with an arbitrary global phase φ. Likewise, in Liouville space,

E(T, 0)ρ̂ij
!= Ôρ̂ijÔ

†
, ρ̂ij = |i〉〈j| , (3.36)

where E(T, 0)ρ̂ denotes the dynamical map.
The most straightforward way to express this in a functional is in terms
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of the complex overlaps,

τk =
〈
k
∣∣∣ Ô†Û(T, 0)

∣∣∣ k〉 (3.37)

in Hilbert space, or

τk = tr
[(

Ô†ρ̂†kÔ
)
E(T, 0)ρ̂k

]
(3.38)

in Liouville space. Two commonly used possibilities for obtaining a real-
valued functional are [138]

JT,sm = 1− 1
N2

∣∣∣∣∣
N∑
k=1

τk

∣∣∣∣∣
2

= 1− 1
N2

N∑
k=1

N∑
l=1

τ∗l τk , (3.39)

JT,re = 1− 1
N

Re

[
N∑
k=1

τk

]
= 1− 1

N

N∑
k=1

1
2 (τk + τ∗k ) , (3.40)

where N = 4 in Hilbert space and N = 16 in Liouville space. JT,sm takes
its minimum value of 0 if Eq. (3.35) is fulfilled with an arbitrary phase φ,
whereas JT,re is 0 only for a global phase of φ = 0. Note that in Hilbert
space,

N∑
k=1

τk = tr[Ô†Û] (3.41)

is the Hilbert-Schmidt overlap of the target gate with the implemented gate.
In Liouville space, JT,sm and JT,re are equivalent, as global phases cannot
be expressed; JT,re is preferred due to its simpler form.

It is important to note that JT,re or JT,sm are used as optimization
functionals only. While in Hilbert space, JT,sm still has a well-defined
meaning (the probability that a state Û|Ψ〉 is obtained in a measurement of
Ô|Ψ〉), this is no longer the case in Liouville space. In general, a physically
meaningful figure of merit of the success of implementing a quantum gate is
through the average gate fidelity Favg defined in Eq. (2.88). For optimization
purposes, we have the freedom to choose an alternative figure of merit JT
with a simpler structure, as long as both JT and the “physical” gate error
1− Favg reach their minimum value for an optimal pulse, and only return
to Favg afterwards to compare results.

The Hamiltonian that induces Û(T, 0) or E(T, 0) takes the form Ĥ =
Ĥd + Ĥc[ε(t)], with the drift Hamiltonian Ĥd and a control Hamiltonian
Ĥc[ε(t)] that depends on a driving field ε(t), parametrized through an
arbitrary number of independent control parameters εj . In most cases
considered here, the pulse is approximated as piecewise constant on a time
grid, and the control parameters are the values of εj ≡ ε(tj + dt

2 ). A
more constrained parametrization with fewer control parameters would
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be provided through predefined analytical shapes, e.g. for a Gauss-shaped
pulse, the εj would be the amplitude, duration, and central frequency; for a
spectral decomposition, the εj would be the amplitudes for the frequencies
ωj .

The task is to minimize a functional such as JT,sm or JT,re, in an iterative
procedure: in each OCT iteration i, we find an update to the pulse ε(i)(t)
such that the updated pulse ε(i+1)(t) yields an improved value for the
functional. The optimization loop continues until J reaches a value that
is smaller than some predefined limit, or until the value of J shows no
significant improvement.

There are two basic categories of algorithms for finding updates for the
control parameters that improve the value of the functional. The first are
“gradient-free”, employing only evaluations of the functional. Most promi-
nently, this includes the downhill-simplex algorithm discussed in section 3.3.2
below. Gradient-free optimization algorithms are extremely versatile and
easy to apply, but they also tend to converge very slowly, particularly for a
large number of control parameters. Moreover, they are prone to running
into local minima, although more advanced global methods such as genetic
algorithms [139] and swarm search optimization [140] also exist. Gradient-
free optimization methods can easily be incorporated into experimental
setups as a closed-loop control, where a measurement determines the figure of
merit and drives a variation of the control parameters for the next iteration.

The second category are gradient-based methods. Including information
about how the optimization functional varies with changes in the controls
greatly speeds up convergence. However, it requires to derive analytical
expressions for the gradient, and then additional numerical resources for
evaluating that gradient. A concurrent scheme like the gradient ascent
discussed in section 3.3.3 varies each control parameter individually ac-
cording to the derivative of the optimization functional with respect to
that parameter. In contrast, Krotov’s method presented in section 3.3.4
takes the time-continuous ε(t) as a whole. Subsequent discretization to a
time grid yields a sequential scheme in which the update for εj takes into
account the updates at earlier times. While not applicable to arbitrary
pulse parametrizations, Krotov’s method guarantees monotonic conver-
gence. Gradient-based methods are typically used as an open-loop control,
where the entire optimization is performed based on a numerical simula-
tion, before taking the final optimized set of controls to an experimental
implementation. Open- and closed-loop control may also be combined in a
hybrid scheme [141] that brings together the advantages of both methods
for experimental applications.

For simplicity, we have only considered a single control Hamiltonian and
driving field here; in general, there may be multiple control Hamiltonians and
driving fields. In this case, each driving field is parametrized independently.
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3.3.2 Downhill Simplex Optimization

The downhill simplex, or Nelder-Mead algorithm [142] is a particularly
simple, gradient-free optimization method that is very effective if there is
only a handful of N optimization parameters. The idea is to construct a
simplex polytope consisting of N + 1 points in the N -dimensional parameter
space. The point with the largest value of the functional is then replaced by
reflection on the remainder of the polytope, followed by some contraction
and expansion steps, yielding a new point with an improved value of the
functional. Intuitively, the simplex “rolls” down the optimization landscape.

The fact that the algorithm only relies on the evaluation of the opti-
mization functional makes it extremely versatile, giving a black box method
for the optimization of arbitrary figures of merit. It is well-suited as a
pre-optimization for finding pulses of simple analytical forms that may then
be optimized further on using a gradient-based method on a time grid. In
particular, the pulse duration T can easily be included as a control parame-
ter for a simplex method. In contrast, T must be fixed when optimizing on
a time grid.

Non-gradient methods may be used for controls that are inherently
coarse-grained, due to the limitations of experimental setups, e.g. the
limited number of pixels in early femtosecond pulse shapers [143]. Some
control problems, specifically in quantum many-body systems [144] have
been demonstrated to have solutions that contain only a small number of
frequency components. The CRAB algorithm [145] (Chopped RAndom
Basis) has been developed for this class of problems; it uses a pre-specified
number ofN frequency components, but chooses those frequencies at random.
That is, the control pulse is parametrized as

εCRAB(t) = S(t)
N∑
n=1

(an sin(ωnt) + bn cos(ωnt)) , (3.42)

with a pulse shape S(t). The frequencies are chosen as

ωn = 2πn
T

(1 + rn) ; rn ∈ [−0.5, 0.5] , (3.43)

where T is the pulse duration and the rn are random numbers. The
coefficients an and bn are optimized using the downhill-simplex algorithm,
with many optimizations running in parallel, using different randomized
frequencies. The CRAB method can be useful since it limits the effective
number of control parameters without assuming a simple analytical pulse
shape, but it fails for control problems whose solution require a large number
of spectral components.
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3.3.3 Gradient Ascent

The GRAPE algorithm [22] (Gradient Ascent Pulse Engineering) considers
the gradient ∂J

∂εj
with respect to any control parameter and then updates

that control parameter according to

ε
(i+1)
j = ε

(i)
j − α

∂J

∂εj
, (3.44)

using a suitable step width α.
For functionals depending on the overlap between propagated and ex-

pected state, and assuming a time-grid parametrization of the pulse, the
gradient of Eq. (3.37) becomes

∂τk
∂εj

= ∂

∂εj

〈
k
∣∣∣ Ô†Ûnt−1 . . . Ûj . . . Û1

∣∣∣ k〉
=
〈
k

∣∣∣∣∣ Ô† Ûnt−1 . . . Ûj+1
∂Ûj
∂εj

Ûj−1 . . . Û1

∣∣∣∣∣ k
〉

=
〈
χk(tj+1)

∣∣∣∣∣ ∂Ûj
∂εj

∣∣∣∣∣φk(tj)
〉
,

(3.45)

where |φk(t)〉 is the forward-propagated basis state |k〉, and |χ(t)〉 is the
backward-propagated target state Ô|k〉. The numerical effort in calculating
the gradient compared to a simple evaluation of the functional is therefore
an additional backward propagation. Moreover, the states of either the
backward or the forward propagation at every point in time need to be
stored in order to calculate the gradient. The derivative of the j’th time
evolution operator is given by

∂Ûj
∂εj

= ∂

∂εj
e−

i
~ Ĥjdt ≡

∞∑
n=1

(−i dt/~)n
n!

n−1∑
k=0

Ĥk
j

(
∂Ĥj

∂εj

)
Ĥn−k−1
j . (3.46)

In Liouville space, Ĥ is replaced by L. For the two functionals JT,sm and
JT,re of Eq. (3.39) and Eq. (3.40), the total gradient is

∂JT,sm
∂εj

= − 1
N2

N∑
k=1

N∑
l=1

[
∂τ∗l
∂εj

τk + τ∗l
∂τk
∂εj

]
= − 2

N
Re

N∑
k=1

N∑
l=1

τ∗l
∂τk
∂εj

, (3.47)

∂JT,re
∂εj

= − 1
N

N∑
k=1

1
2

(
∂τk
∂εj

+ ∂τ∗k
∂εj

)
= − 1

N
Re

N∑
k=1

∂τk
∂εj

. (3.48)

Using only the gradient of the functional to steer the optimization
will generally not yield sufficiently fast convergence; the situation could
be improved by using Newton’s method, taking into account the second
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derivative, i.e., the Hessian

Hjj′ = ∂2J

∂εj∂εj′
. (3.49)

However, calculating the Hessian is generally prohibitively expensive. There-
fore, quasi-Newton methods are employed [146]. The idea is to esti-
mate the Hessian using only gradient information. There are several ap-
proaches of how to achieve this, the most popular one [17] is the BFGS
method [147, 148, 149, 150]. A memory-efficient version of this method that
also allows to define bounds on the control, named LBFGS-B [151] is widely
available as a Fortran library [152].

It is crucial for the application of the LBFGS-B method that the gradient
is calculated to full machine precision. The Taylor series in Eq. (3.46) would
usually have to be evaluated to very high order. A more efficient and stable
method for calculating the gradient is provided by the observation that [153]

exp

− i
~

Ĥj
∂Ĥj
∂εj

0 Ĥj

 dt

( 0
|Ψ〉

)
=

Ûj ∂Ûj
∂εj

0 Ûj

( 0
|Ψ〉

)

=

∂Ûj
∂εj
|Ψ〉

Ûj |Ψ〉

 .

(3.50)

Eq. (3.50) can be efficiently evaluated by applying the Newton propagator
of appendix F.

3.3.4 Krotov’s Method

For time-continuous controls, Krotov’s method [154] considers a functional
of the form

J [ε(i)(t)] = JT ({φ(i)
k (T )}) +

∫ T

0
ga[ε(i)(t)] dt+

∫ T

0
gb[{φ(i)

k (t)}]dt . (3.51)

In addition to the final time functional, e.g. JT,sm or JT,re defined in Eq. (3.39)
and Eq. (3.40), running costs that depend on the control field and the
propagated states at each point in time are also included. As before, for
a gate optimization, the {|φ(i)

k (t)〉} are the basis states {|k〉} propagated
under the pulse ε(i)(t) at the current OCT iteration i.

Krotov’s method uses an auxiliary functional to disentangle the interde-
pendence of the states and the field, allowing to find an updated ε(i+1)(t)
such that J [ε(i+1)] < J [ε(i)] is guaranteed. The derivation, see Ref. [155],
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yields the condition

∂ga
∂ε

∣∣∣∣
ε(i+1)(t)

= 2Im

 N∑
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〈
χ

(i)
k (t)

∣∣∣∣∣
(
∂Ĥ
∂ε

∣∣∣∣∣φ(i+1)(t)
ε(i+1)(t)

)∣∣∣∣∣φ(i+1)
k (t)

〉
+

+1
2σ(t)

〈
∆φk(t)

∣∣∣∣∣
(
∂Ĥ
∂ε

∣∣∣∣∣φ(i+1)(t)
ε(i+1)(t)

)∣∣∣∣∣φ(i+1)
k (t)

〉 ,
(3.52)

with
|∆φk(t)〉 ≡ |φ(i+1)

k (t)〉 − |φ(i)
k (t)〉 . (3.53)

Assuming the equation of motion for the forward propagation of |φk(0)〉 = |k〉
is written as

∂

∂t

∣∣∣φ(i+1)
k (t)

〉
= − i

~
Ĥ(i+1) ∣∣∣φ(i+1)

k (t)
〉
, (3.54)

the co-states |χk〉 are backward-propagated under the old pulse as

∂

∂t

∣∣∣χ(i)
k (t)

〉
= − i

~
Ĥ† (i) ∣∣∣χ(i)

k (t)
〉

+ ∂gb
∂ 〈φk|

∣∣∣∣
φ(i)(t)

, (3.55)

with the boundary condition∣∣∣χ(i)
k (T )

〉
= − ∂JT

∂ 〈φk|

∣∣∣∣
φ

(i)
k

(T )
. (3.56)

In Eq. (3.52), σ(t) is a scalar function that must be properly chosen to
ensure monotonic convergence. In many cases, it is sufficient to set σ(t) ≡ 0,
in particular if the equation of motion is linear (Ĥ does not depend on
|φk(t)〉), the functional JT is convex, and no state-dependent constraints
are used (gb ≡ 0). Even for some types of state-dependent constraints
σ(t) may be set to zero, specifically for keeping the population in an
allowed subspace [156]. However, a state-dependent constraint adds an
inhomogeneity to the equation of motion for |χk(t)〉.

Where σ(t) 6= 0 is required, it can be determined numerically as shown
in Ref. [155]. In chapter 6, final-time functionals that depend higher than
quadratically on the states are considered, while the equation of motion
remains the linear Schrödinger equation. In this case,

σ(t) ≡ −max (εA, 2A+ εA) , (3.57)

where εA is a small non-negative number that can be used to enforce strict
inequality in the second order optimality condition. The optimal value for
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A in each iteration can be determined numerically as [155]

A = 2∑N
k=1 Re [〈χk(T ) |∆φk(T )〉] + ∆JT∑N

k=1 |∆φk(T )|2
, (3.58)

with
∆JT ≡ JT ({φ(i+1)

k (T )})− JT ({φ(i)
k (T )}) . (3.59)

In order to obtain an explicit equation for ε(i+1)(t), a state-dependent
running cost ga must be used, and usually takes the form

ga[ε(t)] = λa
S(t)

(
ε(t)− εref(t)

)2
, (3.60)

with a scaling parameter λa and a shape function S(t) ∈ [0, 1]. When εref is
set to the optimized field ε(i) from the previous iteration,

ga[ε(i+1)(t)] = λa
S(t) (∆ε(t))2 , ∆ε(t) ≡ ε(i+1)(t)− ε(i)(t) , (3.61)

and for σ(t) ≡ 0, the explicit first-order Krotov update equation is ob-
tained [157, 138],

∆ε(t) = S(t)
λa

Im

 N∑
k=1

〈
χ

(i)
k (t)

∣∣∣∣∣
(
∂Ĥ
∂ε

∣∣∣∣∣φ(i+1)(t)
ε(i+1)(t)

)∣∣∣∣∣φ(i+1)
k (t)

〉 . (3.62)

If S(t) ∈ [0, 1] is chosen as a function that smoothly goes to zero at t = 0
and t = T , then the update will be suppressed there, and thus a smooth
switch-on and switch-off can be maintained. The scaling factor λa controls
the overall magnitude of the pulse update. Values that are too large will
change ε(i)(t) by only a small amount, causing slow convergence.

If the reference field εref(t) is set to zero, such that Eq. (3.60) is a penalty
on the pulse fluence, the update equation turns into a simple replacement,
where ε(i+1)(t) is directly given by the right hand side of Eq. (3.62). However,
the lack of an explicit dependence on the previous field leads to numerical
instability. A better approach for penalizing large pulse amplitudes is to
use the state-dependent running cost

ga[ε(i+1)(t)] = λa
S(t)

(
ε(i+1)(t)− ε(i)(t)

)2
+ λε
S(t)

(
ε(i+1)(t)

)2
, (3.63)

which leads to

ε(i+1)(t) = λa
λa + λε

ε(i)(t) + S(t)
λa + λε

δε(t)
2 , (3.64)
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Figure 3.1: Sequential update scheme in Krotov’s method on a time grid.

where δε(t) is the right hand side of Eq. (3.52). It is also possible to derive
update equations for choices of ga that include spectral constraints [158, 159].

The functional JT enters the first-order update equation only in the
boundary condition for the backward propagated co-state, Eq. (3.56). For
the standard functionals defined in Eq. (3.39) and Eq. (3.40), this evaluates
to

− ∂JT,sm
∂ 〈φk|

∣∣∣∣
φ

(i)
k

(T )
=
(

1
N2

N∑
l=1

τl

)
Ô |k〉 , (3.65)

− ∂JT,re
∂ 〈φk|

∣∣∣∣
φ

(i)
k

(T )
= 1

2N Ô |k〉 . (3.66)

If Ĥ depends more than linearly on the field, the derivative

∂Ĥ
∂ε

∣∣∣∣∣φ(i+1)(t)
ε(i+1)(t)

yields an explicit dependence on ε(i+1)(t) on the right hand side of Eq. (3.62).
In this case, the usual approach is to enforce ε(i+1)(t) ≈ ε(i)(t) with a large
value of λa. Alternatively, ∆ε(t) may be determined in a self-consistent
loop. This is especially relevant if instead of ε(t), a parametrization ε(u(t))
is used, where u(t) is the optimized control field. For example, ε(t) = u2(t)
is used to ensure that ε(t) > 0, and

ε(t) = εmax − εmin
2 tanh(u(t)) + εmax + εmin

2 (3.67)

keeps ε(t) bounded between εmin and εmax [160].
Discretization to a time grid yields the numerical scheme shown in Fig. 3.1,

and resolves the seeming contradiction that the calculation of ε(i+1)(t)
requires knowledge of the states |Ψ(i+1)

k (t)〉 propagated under ε(i+1)(t). The
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scheme starts with |χk(T )〉 obtained from Eq. (3.56), which is backward-
propagated under Eq. (3.55). All backward-propagated states |χ(t)〉 must
be stored. The first pulse value is updated according to Eq. (3.62), using
|χk(0)〉 and the known initial state |Ψk(0)〉 = |k〉. Then, |Ψk(0)〉 is forward-
propagated by one time step under Eq. (3.54) using the updated pulse
value. The updates proceed sequentially, until the final forward-propagated
state |Ψk(T )〉 is reached. For numerical stability, it is useful to define the
normalized

|Ψbw
k (T )〉 = 1

‖χk‖
|χk(T )〉 (3.68)

and then later multiply again with ‖χk‖ when calculating the pulse update.

At first glance, there is a striking similarity between the Krotov update for-
mula (3.62) and the gradient in Eq. (3.45), except that for GRAPE/LBFGS-
B both backward- and forward-propagation are performed with the same
pulse ε(i)(t). However, a closer look shows the key difference between
GRAPE/LBFGS-B and Krotov’s method: whereas the former is inherently
discrete, the latter gives a continuous update equation that is discretized
only afterwards. In fact the monotonic convergence of Krotov’s method is
only guaranteed in the continuous limit; a coarse time step must be compen-
sated by larger values of λa, slowing down convergence. Generally, choosing
λa too small will lead to numerical instabilities and unphysical features
in the optimized pulse. A lower limit for λa can be determined from the
requirement that the change ∆ε(t) should be at most on the same order of
magnitude as the guess pulse ε(i)(t) for that iteration. The Cauchy-Schwarz
inequality applied to the update equation (3.62) yields

‖∆ε(t)‖∞ ≤
‖S(t)‖
λa

∑
k

‖χk‖∞ ‖ψk‖∞
∥∥∥∥∥∂Ĥ
∂ε

∥∥∥∥∥
∞

!
≤
∥∥∥ε(i)(t)∥∥∥

∞
. (3.69)

Since S(t) ∈ [0, 1] and |ψk〉 is normalized, the condition for λa becomes

λa ≥
1

max
∣∣ε(i)(t)∣∣

[∑
k

‖χk‖∞
] ∥∥∥∥∥∂Ĥ

∂ε

∥∥∥∥∥
∞
. (3.70)

From a practical point of view, the best strategy is to start the optimization
with a comparatively large value of λa, and after a few iterations lower λa
as far as possible without introducing numerical instabilities. The value of
λa may be adjusted dynamically with the rate of convergence. Generally,
the optimal choice of λa requires some trial and error. Inspired by gradient
ascent, it has been proposed to employ quasi-Newton methods to determine
the Krotov step width λa dynamically [161].

When using the rotating wave approximation (RWA), cf. appendix B,
it is important to remember that the target transformation Ô is usually
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defined in the lab frame, not in the rotating frame. This is relevant for the
construction of |χk(T )〉. The easiest approach is to transform the result of
the forward propagation |φk(T )〉 from the rotating frame to the lab frame,
then construct |χk(T )〉 for the next OCT iteration, and transform |χk(T )〉
back to the rotating frame, before starting the backward-propagation for
the next OCT iteration. When the RWA is used, the control-pulses are
complex-valued. In this case, the Krotov update equation is valid for both
the real and the imaginary part independently. That is, in the update for
the real part of the pulse, all derivatives are also taken with respect to only
the real part, and likewise for the imaginary part.

The control equations have been written in the notation of Hilbert space.
However, they are equally valid for a gate optimization in Liouville space, by
replacing states with density matrices, Ĥ with L, and inner products with
Hilbert-Schmidt products. An explicit formulation is given in chapters 4
and 7.

3.3.5 Choosing an Optimization Method
Whether to use a gradient-free optimization method, gradient ascent, or
Krotov’s method depends on the size of the problem (both the Hilbert space
dimension and the number of control parameters), the requirements on the
control pulse, and the optimization functional. Gradient-free methods should
be used if propagation is extremely cheap (small Hilbert space dimension),
the number of independent control parameters is relatively small, or the
functional is of a form that does not allow to calculate gradients.

Gradient ascent should be used if the control parameters are discrete,
such as on a coarse-grained time grid, and the derivative of J with respect
to each control parameter is known. Moreover, evaluation of the gradient
must be numerically feasible. Parametrization on a time grid, as shown in
section 3.3.3, directly yields an efficient scheme. Gradients for many other
parametrizations (e.g. an expansion in Fourier coefficients) can be derived
from that time grid gradient [162].

Krotov’s method should be used if the control is near-continuous, and if
the derivative of JT with respect to the states, Eq. (3.56), can be calculated.
Sometimes, a functional must be rewritten in an alternative form before
this is possible, as illustrated in chapter 6. When these conditions are
met, Krotov’s method gives excellent convergence, although it is often
observed to slow down when getting close to the minimum of J . Since
quasi-Newton gradient ascent does not show such a slow-down, it can be
beneficial to switch from Krotov’s method to LBFGS-B in the final stage of
the optimization.



4
Robustness through Ensemble

Optimization

The numerical design of robust quantum gates must address two issues. The
first is the unwanted interaction with the environment, inducing decoherence.
In order to take decoherence effects into account, the system must be
modeled using the formalism of Liouville space, as reviewed in chapter 2,
and include the dominant decoherence channels in the equations of motion.
Applying the optimal control techniques (OCT) of chapter 3 allows to find
pathways that avoid these dominant channels and still yield unitary quantum
gates with high fidelity. Beyond that, however, there are also imperfections,
uncertainties, and fluctuations in the classical parameters of the experimental
setup: variations in the control, or extraneous electromagnetic fields. These
can be modeled as variations of the energies and coupling strengths in
the Hamiltonian. The challenge of real-world quantum computing is to
implement quantum gates that are robust with respect to both decoherence
and macroscopic fluctuations.

This chapter, adapted from Ref. [163], illustrates an approach for ob-
taining such robust gates, for the example of a CPHASE gate on trapped
Rydberg atoms: we apply Krotov’s method, section 3.3.4 of chapter 3, in a
Liouville space formulation, and include classical fluctuations through an
ensemble approach, obtaining an optimized control field that induces the
desired gate not just under the ideal Hamiltonian, but also Hamiltonians
with varied parameters. Similar approaches have been used in the context
of NMR spectroscopy [164, 165].

65
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4.1 Implementation of Quantum Gates with
Rydberg Atoms

Rydberg states of trapped neutral atoms provide an attractive platform for
the realization of quantum information processing. The qubit is encoded
in two hyperfine states of the electronic ground state; two atoms in these
states are effectively non-interacting and well-isolated from the environment.
Using a focused laser beam, the atoms may be excited to a Rydberg state
with high principal quantum number. When both atoms are in the Rydberg
state, they feel a strong dipole-dipole interaction [166]. Thus, by exciting
to the Rydberg state, the interaction between two relatively distant atoms
may be switched on and off, generating entanglement and allowing the
implementation of a quantum gate [167, 168].

Arrays of trapped neutral atoms have been realized in optical lattices
with single site occupancy [169, 170], optical tweezers [171], or on atom
chips [172]. Atoms can be kept at a well-defined relative distance and
be addressed individually [173, 174, 175, 176]. Therefore, they have the
potential to provide a scalable architecture for quantum computing, if fast,
high-fidelity quantum gates can be implemented.

The dipole-dipole interaction between two atoms in the Rydberg state,
shifting the energy of the two-atom state |rr〉 by the interaction energy u,
results in a blockade effect [177, 171]. If u is significantly larger than the
energy of a laser tuned to the transition |0〉 → |r〉 of the atom, the laser will
be far off-resonant for reaching |rr〉. Thus, exciting one atom to |r〉 blocks
the second atom from being excited. If the laser energy is much larger than
u, the blockade may be broken, as the transition to |rr〉 is now only weakly
detuned.

Both in the blockade and the non-blockade regime, there are proposals
for the implementation of quantum gates [178]. Outside the blockade regime,
single-site addressability of the atoms is not required. Exciting the atoms
to the |rr〉 state for a duration of T , a two-qubit phase of γ = uT is
generated. However, excitation to the |rr〉 state can induce atomic motion,
limiting the fidelity. Using optimal control, the motional degree of freedom
can be restored; it has been shown that errors on the order of 10−3 are
attainable [73, 179].

Here, we focus on the blockade regime and assume that the atoms can
be individually addressed. A CPHASE gate can then be implemented by
the scheme shown in Fig. 4.1 [178]. First, a π-pulse is applied only to the
left atom, transferring population from |0〉 to |r〉, with a phase factor of eiπ2 ,
see appendix C. The |1〉 level is completely isolated and is thus not affected
by the pulse. The second step is a 2π-pulse on the right atom. Because
of the Rydberg blockade, the |r0〉 and |r1〉 state are unaffected, whereas
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π-pulse 2π-pulse π-pulse
(left) (right) (left)

|00〉 → i |r0〉 → i |r0〉 → − |00〉
|10〉 → |10〉 → − |10〉 → − |10〉
|01〉 → i |r1〉 → i |r1〉 → − |01〉
|11〉 → |11〉 → |11〉 → |11〉

Figure 4.1: Scheme for the implementation of a CPHASE gate with individually
addressable atoms in the Rydberg blockade regime

|10〉 → i|1r〉 → −|10〉. Lastly, another π-pulse on the left atom completes
the gate.

While conceptually, the available schemes provide a clear recipe for
the implementation of quantum gates, their experimental realization holds
considerable challenges. While the dipole-dipole interaction between two
atoms in the Rydberg states potentially allows for fast gates, there are a
number of intrinsic and technical sources of error that can restrict both the
achieved fidelity and the speed of operation.

The transition |0〉 → |r〉 is not directly accessible by available laser
frequencies. Therefore, it must be implemented as a two-photon transition
via an intermediary level. This complicates the implementation of the
necessary π- and 2π-pulses for the gate scheme in Fig. 4.1 considerably. Loss
from the intermediary level has been identified as one of the primary technical
challenges in the implementation of a gate, together with fluctuations in
pulse amplitude, and fluctuations in the Rydberg level, which is highly
sensitive to external electromagnetic fields [180].

In section 4.3, we consider several analytic pulse sequences that implement
the gate scheme via an intermediary level, realizing effective Rabi-pulses
either via adiabatic elimination [181] or a STIRAP process [182], and sys-
tematically analyze their robustness with respect to the primary fluctuating
parameters. Even in the best case, we find that gate fidelities drop by several
percent over a realistic range of fluctuations. Moreover, gate durations of at
least 800 ns are required. In related existing proposals to mitigate the effects
of intrinsic errors in Rydberg gates using adiabatic passage techniques [183],
the resulting pulse sequences typically also result in relatively long gate
times of µs or longer [184, 185].

We therefore turn to optimal control, using Krotov’s method presented
in chapter 3, applied to the density matrix formalism in order to take into
account spontaneous emission from the intermediary level. Secondly, we
obtain robustness with respect to fluctuations in pulse amplitude, expressed
through the dipole moment, and Rydberg energies, expressed through the
two-photon detuning. The results of the optimal control yield systematically
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|0〉
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Figure 4.2: Level scheme for a single atom.

higher gate fidelities than all analytic approaches, showing improvement of
an order of magnitude to reach gate errors of order 10−4 for equivalent gate
times. Most importantly, optimal control can deliver gate performance that
is also extremely robust with respect to experimental fluctuations, with the
gate error staying below or at the order of 10−3 even for large fluctuations,
i.e. below the quantum correction limit [186]. Lastly, optimal control also
allows to address the issue of gate duration. By systematically decreasing
the gate time until the optimization no longer yields a gate of sufficiently
high fidelity [107], a “quantum speed limit” for performing the gate [187]
can be determined. Compared to the analytical solutions, using optimal
control we can significantly shorten the total gate duration, to ∼100 ns,
without loss in either robustness or fidelity.

4.2 Model
We consider two cesium atoms trapped in an optical lattice with single-site
addressability. The qubit states are encoded in hyperfine levels of the ground
state, |0〉 = |6 2S1/2, F = 3〉, |1〉 = |6 2S1/2, F = 4〉.

For technical reasons, the Rydberg level, here |r〉 = |50D3/2〉, is accessed
by a two-photon transition via an intermediate state [171, 167], |i〉 = |7P3/2〉.
In the basis {|0〉, |1〉, |i〉, |r〉}, the Hamiltonian for a single atom, using a
two-photon rotating-wave approximation, see appendix B, reads

Ĥ1q =


0 0 ΩB(t) 0
0 E1 0 0

ΩB(t) 0 ∆1 ΩR(t)
0 0 ΩR(t) ∆2

 , (4.1)

where ΩB(t),ΩR(t) are the Rabi frequencies of the ‘blue’ and ‘red’ pulses,
Ωα = 1

2µ
α
ijE(t), cf. Fig. 4.2, and ∆1,∆2 are the one-photon and two-photon

detunings. The two atoms are kept at a distance of 5 µm such that their
interaction is negligible except when both atoms are in the Rydberg state.
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Single-Photon Detuning ∆1 = 1.273 GHz
Two-Photon Detuning ∆2 = 0
Qubit Energy E1 = 9.100 GHz
Interaction Energy u = 57.26 MHz
Intermediate State Lifetime τ = 150.0 ns

Table 4.1: Rydberg atom system parameters

The Hamiltonian for the two atoms, including their Rydberg interaction, is
written as

Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q − u |rr〉 〈rr| , (4.2)

with interaction energy u. The parameters are summarized in Table 4.1.
Rabi frequencies of ΩB = 171.5 MHz and ΩR = 148.4 MHz have been
implemented for this system and values up to ∼250 MHz are expected to
be experimentally feasible [188]. Note that we can restrict our model to a
single mJ -sublevel of the Rydberg state (e.g., mJ = 5/2) by choice of laser
polarization, such that the shift due to the interaction u is insensitive to
magnetic field [166] and may then be ignored. In order clarify the physics
of the alternate excitation path to the excited state, we have approximated
the intermediate state as a single level. In practice, since the alternate
excitation path is approximately resonant with the intermediate state, it
would be desirable to also include details of the intermediate state hyperfine
structure in the control optimization. This might affect the optimal laser
detuning but will not cause any qualitative changes in the results obtained
here.

The intermediate level undergoes spontaneous decay to the ground state.
Thus, the full dynamics must be described by a master equation in Lindblad
form,

∂

∂t
ρ̂(t) = − i

~
[Ĥ2q(t), ρ̂(t)] + LD(ρ̂(t)) . (4.3)

LD is the dissipator for the spontaneous decay of each atom,

LD(ρ̂) = 1
~τ

∑
i=1,2

(
Âiρ̂Â†i −

1
2
{

Â†i Âi, ρ̂
})

, (4.4)

with Â1 = |0〉〈i| ⊗ 1, Â2 = 1⊗ |0〉〈i|, and τ the lifetime of state |i〉.
Resonant excitation of both atoms to the Rydberg state leads to an

acceleration of the atoms towards each other due to the dependence of the
Rydberg interaction strength on interatomic separation [178]. The minimum
gate duration is then determined either by the inverse of the interaction, u,
or by the period of the atomic motion in the trap [73]. The gate duration
may be limited further by the inverse of the experimentally realizable Rabi
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frequencies.
We consider here the Rydberg blockade regime which avoids resonant

excitation into |rr〉. It corresponds to

Ωeff � u, (4.5)

where [189]
Ωeff ≈

ΩRΩB

2∆1
. (4.6)

The original proposal of the Rydberg gate [178] in this regime requires
the atoms to be individually addressable, and employs the pulse sequence
shown in Fig. 4.1. If the qubits are initially in |00〉, a non-local phase is
accumulated during the middle pulse because of the detuning of level |rr〉
due to the interaction, u, and we can thus execute a CPHASE gate. This is
in principle feasible with the experimental setup of Ref. [173].

We quantify success in terms of the gate error defined as 1−Favg, where
Favg is the average gate fidelity, Eq. (2.91). The fidelity is calculated with
respect to the target CPHASE gate, for Û, the projection of the time
evolution operator onto the logical subspace (Û is unitary if and only if
there is no loss from that subspace at final time T ).

4.3 Analytic pulse sequences
When a resonant two-photon transition is employed via an intermediate level,
the two-level system {|0〉, |r〉} for one atom in the original proposal [178] is
replaced by {|0〉, |i〉, |r〉}. The π and 2π population flips can then be realized
either with two simultaneous pulses, namely ΩB connecting |0〉 and |i〉 and
ΩR connecting |i〉 and |r〉; or via a STIRAP process [182], where ΩR acts as
a “Stokes” pulse, preceding but overlapping ΩB, the “pump” pulse. Both
methods may be combined in a mixed scheme, where a STIRAP sequence
is used for the π flip acting on the left atom, while the 2π flip on the right
atom is realized using simultaneous pulses. The pulse schemes should avoid
putting any population in the intermediary state; if this condition is satisfied
there are no relevant dissipative effects and the dynamics can be described
in Hilbert space, using the time-dependent Schrödinger equation in place
of Eq. (4.3). The following sections discuss the merits and drawbacks of
all three approaches, and numerically analyze the robustness with respect
to pulse timing, fluctuations of the Rydberg level, and fluctuations of the
pulse amplitude. We find that the mixed scheme is the most robust of these
analytic approaches, due to its selective use of STIRAP on the control qubit
only. However, all STIRAP based schemes are found to require either large
pulse amplitudes or exceedingly long pulse times.
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Figure 4.3: Three sequential Blackman pulse pairs implementing a CPHASE gate.

4.3.1 Sequence of three simultaneous pulse pairs
We first consider the realization of all population transfers using simultaneous
pulse pairs. The pulses are of Blackman shape,

Ω(t) = E0
2

(
1− a− cos

(2πt
T

)
+ a cos

(4πt
T

))
, (4.7)

with a = 0.16 and E0 the peak amplitude. This pulse shape is essentially
identical to a Gaussian centered at T/2 with a width of σ = T/6, but, unlike
the Gaussian, is exactly zero at t = 0 and t = T . Other pulse shapes are
possible.

A pulse sequence that realizes the two π-flips on the left atom and one
2π-flip on the right atom is shown in Fig. 4.3. Due to the large single photon
detuning of 1.3 GHz, the intermediate level can be adiabatically eliminated.
This places a restriction on the pulse amplitude,

ΩB,ΩR � ∆1 . (4.8)

The 2π pulse is more stringently restricted by the blockade condition in
Eq. (4.5). With the pulse duration being inversely proportional to the pulse
amplitude, both effects result in a quantum speed limit.

Quantitatively, the limitations are illustrated in Fig. 4.4 which shows
the gate error (black solid line) vs. duration of the middle 2π pulse, using
a duration of 50 ns for the initial and final π pulse. The breakdown of
adiabatic elimination becomes apparent in the peak population of the |0i〉
state (blue short-dashed line), whereas a breaking of the Rydberg blockade
is observed in the peak population in the |rr〉 state (orange long-dashed line).
Gate errors below 10−3 are only reached for pulse durations of ≥800 ns. The
gate time is dominated by the central 2π pulse, which must be sufficiently
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Figure 4.4: Quantum speed limit for the Rydberg gate using simultaneous
Blackman pulse pairs. The time window is only that of the center 2π pulse in the
scheme. As a measure of the breakdown of the Rydberg blockade, the maximum
population in the |rr〉 state during that pulse is shown, as well as the maximum
population in the |01〉 state, as a measure of the breakdown of the adiabatic
elimination of the intermediate level. Finally, we show the total gate error
obtained when combining the center 2π pulse of the given duration with two 50 ns
π pulses on the left atom.

weak to not break the Rydberg blockade. Already, the pulse amplitude is
remarkably close to the interaction energy, pushing the limits of condition
(4.5). Note that the choice of identical peak Rabi frequencies for the red
and blue laser, ΩB,max = ΩR,max, is the only ratio possible to guarantee
complete population inversion in a three-level system using simultaneous
pulses when the intermediate level is adiabatically eliminated [189].

Population and phase dynamics obtained with simultaneous red and blue
pulses are shown in Fig. 4.5. As described in section 4.2, the population
undergoes a π Rabi cycle on the left atom, followed by a 2π pulse on the
right atom, followed by a π pulse on the left atom, cf. Fig. 4.5 (a,b,c). The
intermediate levels (red long-dashed lines) receive almost no population.
Thus, for this time scale, spontaneous decay is not an issue. As can be
seen from Fig. 4.5 (f), the non-local phase is accumulated in the |00〉 state
entirely during the central 2π pulse. Although the Rydberg blockade is
not broken, and the population remains in |r0〉, the state accumulates an
additional phase due to the detuned pulse driving the transition out of |r0〉.
This additional phase is critical for the success of the gate.

4.3.2 Sequence of STIRAP pulse pairs
STIRAP is a popular scheme to achieve population transfer in three-level
systems, avoiding population in the intermediate level at all times [190]. It is
based on adiabatically following a dynamic dark state that does not contain
an |i〉-component. In our setup, the scheme for transferring population
from |0〉 to |r〉 is realized by first switching on the red laser, acting as a
“Stokes” pulse, followed by the blue laser, acting as the “pump” pulse. The
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Figure 4.5: Population and phase dynamics using the simultaneous pulses shown
in Fig. 4.3. Since the population in the intermediary states |1i〉, |i1〉, |i0〉 are
effectively zero throughout, there are not included in the phase dynamics, panels
(d-f).

two pulses must overlap, but the process is robust with respect to the laser
amplitude and the exact overlap of the pulses, as long as the condition for
adiabatic following, roughly given by [190]

ΩB∆τ,ΩR∆τ � 10 (4.9)

is met, where ∆τ is the time for which the pulses overlap. Thus, for short
pulses, large amplitudes are required. However, for a Rydberg gate, the
blockade condition, Eq. (4.5), also needs to be fulfilled, limiting the maxi-
mum Rabi frequency. Therefore STIRAP can only employ comparatively
long pulses for the center 2π Rabi flip on the right atom.

In order to quantify the violation of the blockade condition, we define
the “blockade efficiency” as

B = max(P1r)−
1
2P1r(T )−

(
max(Prr)−

1
2Prr(T )

)
, (4.10)

where T is the total time of the pulse sequence and P1r and Prr are the
population in |1r〉 and |rr〉, respectively. B takes values between zero
and one, with one corresponding to a perfect blockade. Both maximum
and final-time populations appear in B because in order to have full Rabi
cycling, the Rydberg level must be fully populated (giving a maximum
population of one) and then fully depopulated (giving a final population
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Figure 4.6: Breakdown of the Rydberg blockade for STIRAP: Only long gate
durations allow for amplitudes that are sufficiently large to ensure adiabaticity in
STIRAP while being small enough not to break the Rydberg blockade (lower
panel).The amplitude of the two central pulse pairs are systematically scanned
while the amplitude of the first and last pulse pairs are kept constant.

of zero), i.e., considering only the maximum population does not allow
for distinguishing between π and 2π pulses. We only obtain B = 1 when
the population completes a 2π cycle through |1r〉 whenever the system
begins in |10〉, but never reaches |rr〉 whenever the system begins in |00〉.
The blockade condition, Eq. (4.5), depends on the peak amplitude of the
pulses whereas the adiabaticity condition, Eq. (4.9), depends on the pulses’
complete Rabi angle. For short central 2π pulses the Rabi angle will not be
sufficiently large to satisfy the adiabaticity condition without requiring a
peak amplitude so high that it will break the blockade. This is illustrated
in Fig. 4.6 (top), where for small amplitudes both the maximum and final
|1r〉 populations rise together: the Rabi angle is less than π. Then, as
the final |1r〉 population begins to fall such that the adiabaticity condition
of STIRAP is better fulfilled, the blockade is broken, causing the drop in
the blockade efficiency, concurrent with a rise in both the maximum and
final |rr〉 populations. In Fig. 4.6 (bottom), the maximum and final |1r〉
populations rise together, but |1r〉 is now fully depopulated, thus achieving
full Rabi cycling, before breaking the blockade. This corresponds to the
area where B ≈ 1 seen in the graph. We do not see a rise in the maximum
and final |rr〉 population until high peak amplitudes.

A corresponding sequence of STIRAP pulse pairs, using short pulses on
the left atom and long pulses on the right atom, is shown in Fig. 4.7. In
principle, the pulses on the left atom can be made arbitrarily short, at the
expense of extremely large field amplitudes. Taking into account realistic
restrictions on the available laser power, the gate time will generally become
prohibitively large.
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Figure 4.7: A sequence of STIRAP pulse pairs to implement the Rydberg
CPHASE gate: While the pulses acting on the left atom can be made very short
(limited effectively by the power of the driving laser), the pulses acting on the
right atom need to be sufficiently long to avoid breaking the Rydberg blockade.

Additionally, since the STIRAP pulses are so robust to two-photon
detuning [191], STIRAP will, to some extent, resolve the non-resonant
Rydberg levels that are not explicitly considered, leading to unwanted
population dynamics. Even if this population transfer to extraneous levels
is invertible, it will lead to undesired phase accumulation as the higher and
lower energy levels rotate with different frequencies than the rotating frame.

4.3.3 Mixed scheme: STIRAP-π-pulses and simultaneous
2π-pulses

The primary drawbacks of the simultaneous pulses are the unwanted popu-
lation in the intermediate level for the pulses acting on the left atom and
a relatively large sensitivity of the pulses to variations in pulse area. On
the other hand, the primary drawback of STIRAP is the breakdown of the
Rydberg blockade, which results from employing an extremely long pulse
acting on the right atom. This issue, however, is not present when using
STIRAP for the pulses acting on the left atom. We therefore investigate
a mixed scheme, consisting of STIRAP pulses to drive the π rotations
on the left atom and simultaneous pulses to drive the 2π rotation on the
right atom, cf. Fig. 4.8. By doing so we use each method where it is
most effective. Furthermore, the pulses on the left and right atom can be
overlapped without any appreciable loss in fidelity. This is because the
pulses acting on the right atom only drive significant population transfer
during the central third of the pulses. As long as the left atom is populated
by the time the amplitude of the pulses acting on the right atom becomes
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Figure 4.8: Mixed scheme: STIRAP pulse pairs for robust population transfer on
the left atom, and simultaneous pulses for the 2π rotation of the right atom.

significant, the blockade is still effective. The two STIRAP pulses acting on
the left atom, that bookend the central pulses acting on the right atom, are
moved in towards the center. In fact the pulses can be compressed quite
far: By overlapping the STIRAP pulses with the central pulses for 250 ns
(see Fig. 4.8), the gate duration can be reduced from 1300 ns to 800 ns. The
gate duration in the mixed scheme is limited by the laser power available
for driving the left atom.

4.3.4 Robustness

For all three variants of pulse sequences, the gate fidelity in an actual
experiment will be compromised by noise and experimental inaccuracies.
In the following, we consider three main sources of errors: inaccuracies in
timing between the pulses acting on the left and right qubit, inaccuracies
in pulse amplitudes, and fluctuations of the Rydberg level due to, e.g.,
the presence of DC electric fields [160]. The latter results in a non-zero
two-photon detuning. To analyze the robustness with respect to all of
these fluctuations, we determine the expectation value of the gate fidelity
under the assumption that the timing offset, the transition dipole, and
the two-photon detuning differ from the optimal values by ∆time, ∆Ω, and
∆ryd drawn from a Gaussian distribution centered at 0 of width σtime, σΩ,
and σryd, respectively. For the pulse amplitudes, the variation is given in
percent of the original amplitudes. The expectation value of the avergage
gate fidelity is given by

F̃ (σx) =
∫ 1√

2πσ2
x

e
− ∆x

2σ2
x Favg(∆x) dx, (4.11)
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Figure 4.9: Robustness of the Rydberg gate with respect to Rydberg level
fluctuations (top), amplitude fluctuations (middle), and fluctuations in the relative
timing between pulses acting on the left and right atom. All fluctuations are
drawn from a Gaussian distribution of width σryd, σΩ, and σtime, respectively.
Note that the (%) in the middle panel refers to the percent by which the each
pulse was uniformly scaled down. For the Rydberg level, σryd = 150 kHz
represents a 0.3% variation of u = 57 MHz.

with σx = σtime, σΩ, σryd, and ∆x = ∆time,∆Ω,∆ryd, and Favg given by
Eq. (2.91). Sampling over 1000 variations of each parameter allows to
evaluate the integral in Eq. (4.11) numerically.

Figure 4.9 shows the resulting expectation value of the gate fidelity vs.
standard deviation of the fluctuations in pulse timings, pulse amplitudes,
and energy of the Rydberg level. The gate is found to be very robust with
respect to pulse timings and fairly robust with respect to amplitudes: only
errors of more than a few nanoseconds in timing and several per cent in
amplitude reduce the gate fidelity appreciably. A larger sensitivity is found
with respect to the position of the Rydberg level: Fluctuations on the order
of 1% of the interaction energy u = 57 MHz reduce the gate fidelity to
around 0.5 even for the most robust scheme, and even those on the order
of 0.1% of u reduce the fidelity appreciably, cf. top panel of Fig. 4.9. This
is not surprising, since a ‘wrong’ energy of the Rydberg level leads to a
non-zero two-photon detuning, ∆2, and thus affects both the population
transfer for the left atom and the non-local phase accumulated during the
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pulse acting on the right atom. This additional phase is by assumption
unknown and thus cannot be accounted for. Depending on the choice of
the Rydberg level, the fluctuations of the level energy may be suppressed
down to 100 kHz or less [192]. Gate fidelities of about 0.98 are then within
reach, as shown in the upper panel of Fig. 4.9.

Though all the schemes behave similarly with respect to variations in
timing, there are significant differences in each scheme’s robustness to
fluctuations in pulse amplitude and Rydberg level energy. For inaccuracies
in pulse amplitude, cf. Fig. 4.9 (middle), the fidelity achieved with STIRAP
pulses is far more susceptible to small variations than both other schemes.
This is due to the additional phase accumulated for STIRAP during the
central pulse acting on the right atom, caused by undesired population
entering |ri〉, cf. section 4.3.2. Additional corrections would be required to
compensate undesired phase evolution [185]. The mixed scheme performs
slightly better than the simultaneous scheme in this respect, as the robust
STIRAP pulses acting on the left atom can achieve efficient population
transfer at a wide variety of amplitudes. With respect to fluctuations in
the energy of the Rydberg level, in Fig 4.9 (top) the longer a given scheme
populates |r0〉, the less robust that scheme is. When the population is in
the detuned |r0〉 state, it accumulates an undesired phase, and this, not
the loss in population transfer efficiency, is the primary reason for the drop
in fidelity. The longer a scheme remains in |r0〉, the longer it takes to
accumulate this additional phase. The mixed scheme, which overlaps the
pulses acting on the left and right atom and thus populates |r0〉 for the
shortest time possible, is the most robust to fluctuations in the Rydberg level
energy. This is followed by the simultaneous scheme, which fully populates
|r0〉 for 700 ns, and finally the STIRAP scheme, which fully populates |r0〉
for 4200 ns. Counterintuitively, then, the schemes actually are less robust
with respect to variations in Rydberg level energy the longer they become.

4.4 Optimal control
The use of optimal control theory (OCT) allows to obtain non-analytic
pulses that are not bound by conditions of adiabaticity, and that can realize
gate times at the quantum speed limit [73, 193, 160]. Here, we extend the
application of optimal control to increase the robustness of the pulses with
respect to fluctuations in amplitude and the energy of the Rydberg level due
to external fields. This is achieved by requiring the gate fidelity, Eq. (2.88),
to be close to one not only for the ideal Hamiltonian Ĥ0, Eq. (4.2), but
also for an ensemble of perturbed Hamiltonians {Ĥn}, n = [1, N − 1] that
sample the relevant parameter space of variations. Unlike in the analytical
pulse schemes, the optimized control pulses will not consist of sub-pulses,
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but will be completely overlapping. Therefore, an analysis of the robustness
with respect to pulse timing is not meaningful in this context.

4.4.1 Control Equations
Since population in the intermediate state |i〉 should be avoided, we now
perform the optimization in Liouville space, and include spontaneous emis-
sion for the intermediate level with a lifetime of 150 ns [194, 195]. The
optimization functional to be minimized reads

J = 1− 1
16N

N−1∑
n=0

16∑
k=1

Re
{

tr
[
Ôρ̂k(0)Ô†ρ̂k,n (T )

]}
−

4∑
j=1

λj

∫ T

0

(∆Ωj(t))2

S(t) dt ,

(4.12)
with

∆Ωj(t) = Ω(i+1)
j (t)− Ω(i)

j (t) . (4.13)

in iteration OCT iteration i. The first part of J is a final time cost that
measures the Hilbert-Schmidt overlap of the propagated states ρ̂k,n(T ) with
the target states Ôρ̂k(0)Ô†, where Ô is the CPHASE gate, up to a trivial
global phase due to the natural time evolution of the |1〉 state. It corresponds
to Eq. (3.40) in Liouville space, over all states in the basis, and for each
ensemble. The set of ρ̂k are the canonical basis elements of the two-qubit
Liouville space, {|i〉〈j|} ∀i, j ∈ {00, 01, 10, 11}. The state ρ̂k,n(T ) is the
state ρ̂k(0) propagated under the n’th ensemble Hamiltonian Ĥn. In order
for a robust gate to be successfully implemented, the overlap must become
maximal for all of the N ensemble members.

The second term corresponds to Eq. (3.61), but for the four controls Ωj(t):
the fields of the red and blue lasers for the left and right atom, respectively.
S(t) is a shape function for ∆Ωj that maintains smooth switch-on and
switch-off of the pulses. The gate duration T is fixed for the optimization,
but can be systematically varied in order to determine the quantum speed
limit. As shown in chapter 7, for numerical efficiency, the full basis of 16
states can be replaced by just two density matrices specifically tailored to
the optimization problem, exploiting the fact that we optimize for a diagonal
unitarity and not a general dynamical map [196]. The time dependent states
ρ̂k,n(t) are determined by the equation of motion,

∂

∂t
ρ̂k,n(t) = − i

~
[Ĥn(t), ρ̂k,n(t)] + LD(ρ̂k,n(t)) (4.14)

with ρ̂k,n(t = 0) = ρ̂k(0), and LD according to Eq. (4.4).
For our choice of functional, the linear version of Krotov’s method [138,

155] is sufficient. The update equation for each control is given by Eq. (3.62),
but written out in Liouville space. The inner product is new given by the



80 4. Robustness through Ensemble Optimization

Hilbert-Schmidt overlap. Since the dissipator does not depend on the
control,

∂L
∂Ωj

ρ̂
(i+1)
k,n (t) =

[
∂Ĥn

∂Ωj
, ρ̂

(i+1)
k,n (t)

]
. (4.15)

Thus, the update equation for each pulse reads

∆Ωj(t) = S(t)
λj

N−1∑
n=0

16∑
k=1

Im

{
tr
(
−i σ̂(i)

k,n(t)
[
∂Ĥn

∂Ωj
, ρ̂

(i+1)
k,n (t)

])}
, (4.16)

with the σ̂(i)
k,n(t) being a set of co-states backwards propagated with the

pulse from the previous iteration, cf. (3.55),

∂σ̂k,n(t)
∂t

= − i
~

[Ĥn(t), σ̂k,n(t)]− LD(σ̂i,n(t)) . (4.17)

Note the change of sign for the dissipator compared to Eq. (4.14). This
reflects the propagation under the adjoint equation of motion, expressed
as Ĥ† in Eq. (3.55). The ‘initial’ condition for the propagation of σ̂ is
determined by the final time objective, cf. Eq.(3.56), resulting in

σ̂k,n(t = T ) = Ôρ̂k(0)Ô† . (4.18)

This corresponds to Eq. (3.66), with the normalization prefactor absorbed
in λj . The states ρ̂(i+1)

k,n (t) in Eq. (4.16) are forward propagated using the
pulse of the current iteration, according to Eq. (4.14). In the case of the
rotating wave approximation where the Ωj(t) are complex, Eq. (4.16) is
valid for both the real and the imaginary part of the pulse.

4.4.2 Optimized Rydberg Gates
In order to optimize for robustness with respect to both amplitude fluc-
tuations and fluctuations of the Rydberg level, we choose an ensemble of
N = 24 Hamiltonians, evenly sampling the values of ∆ryd between ±300 kHz
and variations of the dipole coupling strength between ±5%. The resulting
pulses and their spectra are shown in Fig. 4.10, in the two-color rotating
frame. In the spectra, the central frequency of zero corresponds to a laser
frequency of the blue pulse that is detuned by ∆1 with respect to the
|0〉 → |i〉 transition. For the red pulse, it indicates the frequency for which
there is a two-photon resonance with the |0〉 → |r〉 transition. The guess
pulses from which the optimization started are indicated in orange; they
are inspired by the analytic scheme of the previous section, consisting of
two π pulses on the left atom and simultaneously one 2π pulse on the right
atom. The gate duration was set to T = 800 ns, matching the shortest gate
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duration obtained for the analytic schemes in the previous section. The
choice of the guess pulse is arbitrary in principle, but has significant impact
on the convergence speed and the characteristics of the optimized pulse.
Indeed, the optimized pulse shapes still roughly follow the shapes of the
guess pulses. However, especially for the left atom, there are fast oscillations
present in the optimized pulse shapes. These correspond to a second laser
frequency. As can be seen from the spectra shown in Fig. 4.10 (c), this
second frequency is at +∆1 for the blue pulse and at −∆1 for the red pulse.
This allows a pathway interference to be set up in the energy level space, as
follows. Pulses at these additional frequencies are now two-photon resonant
with the |0〉 → |r〉 transition and thereby introduce a second excitation
pathway whose interference with the primary pathway can be exploited as
a control mechanism. The optimization procedure takes advantage of this
mechanism to enhance the overall gate fidelity by utilizing the interference
between excitation amplitude contributions from these distinct paths con-
necting the atomic ground and Rydberg state. We note that the blue side
peak is smaller as a result of the smaller amplitude of the corresponding
laser. Indeed, in the spectra of the pulses acting on the right atom, cf.
Fig. 4.10 (d), the second frequency is mostly absent, except for the very
beginning and end of the red pulse.

The population induced by the optimized pulses with the ideal Hamil-
tonian Ĥ0 is shown in Fig. 4.11. Even though the optimized pulses have
frequency components that are resonant with the |0〉 → |i〉 transition, the
intermediate level is now never significantly populated, due to destructive
interference along the two pathways in energy space. Suppression of the
intermediate state population may be aided by the STIRAP-like feature
of the optimized pulse shape, in Fig. 4.10 (a) and (b), where the red laser
(counter-intuitively) precedes the blue laser in the initial depopulation of the
|0〉 level of the left atom, and follows it in the final repopulation. Further-
more, the population of the |01〉 state stays remarkably constant, despite
the rather large amplitudes of the laser fields in Fig. 4.10 (a). Again, this is
due to the interfering multiple pathways. In contrast, the dynamics of the
|10〉 state is much more straightforward, on account of the absence of the
second laser frequency. The pulse consists effectively of a single 2π pulse,
although not with full population transfer. The Rydberg blockade is almost
fully maintained, cf. the lack of population in the |rr〉 state in the bottom
panel of Fig. 4.11. Also, the right atom in the time evolution of the |00〉
state is almost unaffected by the pulse on the right atom, resulting in very
similar population dynamics for the |00〉 and |01〉 states.

Optimal control also holds the promise of finding pulses approaching the
quantum speed limit. With numerical optimization, we can find solutions
with gate durations far below T = 800 ns required for the analytic schemes,
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Figure 4.10: Amplitudes and spectra of pulses optimized with respect to
variations in both two-photon detuning and pulse amplitude, for a gate duration of
T = 800 ns. The central peaks in the spectra are truncated to emphasize the
side-peaks, reaching 2.0 (red) and 0.8 (blue) in panel (c), and 1.4 (red) and 1.0
(blue) in panel (d). The frequencies matching ±∆1 are indicated by vertical
dashed gray lines.

although very short pulses may require unfeasibly large pulse amplitudes.
The pulses and spectra resulting from an optimization for T = 100 ns are
shown in Fig. 4.12. The pulses are optimized for robustness, using the same
ensemble of Hamiltonians as for the T = 800 ns pulses. The pulse shapes
again follow the features of the guess pulse, and are only slightly more
complex than those for 800 ns in Fig. 4.10, and should be well within reach
of established nanosecond pulse shaping techniques [197].

The spectra in Fig. 4.12 (c) and (d) reveal that a similar pathway
interference mechanism as seen in the optimized T = 800 ns pulse sequences
operates, realized by the additional frequencies at ±∆1. The most significant
difference from Fig. 4.10 is that now the additional frequencies are present
for both the left and the right atom throughout the entire gate duration.
As a result of the shorter time window, the peaks in the spectrum are
broadened and the pulse amplitudes are now significantly higher. Generally,
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Figure 4.11: Dynamics under the pulses optimized with respect to fluctuations in
both the Rydberg level and pulse amplitudes, as shown in Fig. 4.10. The
intermediate population in the bottom panel (“int”) is integrated over the states
|0i〉, |i0〉, |ii〉, |ir〉, and |ri〉. The shown dynamics implement the desired CPHASE
gate up to a gate error of 1.04× 10−4.

the optimization becomes harder for shorter pulse durations and the available
control mechanism must now be used more efficiently: This rationalizes the
presence of the second laser frequency throughout all pulses.

The population dynamics in Fig. 4.13 show some significant differences
from the dynamics shown in Fig. 4.11, as a result of the increase in laser
amplitude. Most importantly, the Rydberg blockade is now broken, resulting
in a significant population of the |rr〉 state, cf. the purple curve in the bottom
panel. This nicely illustrates the power of OCT; while the analytic schemes
rely on maintaining the blockade regime, the optimization has no such
restrictions, and will exploit any pathways available in the time evolution
generated by the two-qubit Hamiltonian. There is some minor population in
the intermediate states during the propagation of the |00〉 state, cf. the blue
line in the bottom panel of Fig. 4.13. However, since the dynamics result
from an optimization that explicitly took into account the spontaneous
decay from the intermediate level, we are guaranteed that the population in
this level is below a threshold value that would affect the gate fidelity.

In Fig. 4.14, we compare the effect of fluctuations due to electric fields
and pulse amplitude fluctuations on the gate fidelity for the pulses obtained
with OCT, cf. Figs. 4.10 and 4.12, to that for the most robust gates achieved
with the analytic schemes, i.e., the mixed scheme employing STIRAP for
the pulses on the left atom, and simultaneous pulses for the right atom, cf.
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Figure 4.12: Amplitudes and spectra of pulses optimized with respect to
variations in both two-photon detuning and pulse amplitude, for a gate duration of
T = 100 ns. The spectra are drawn on the same scale as in Fig. 4.10, with the
central peaks in panel (c) reaching 4.5 (blue) and 3.0 (red), and 4.5 for both pulses
in panel (d).

Fig. 4.9. The optimized pulses are significantly more robust with respect to
both sources of error by at least an order of magnitude, with the gate fidelity
staying above 99.9% even for large variations, whereas for the analytic pulses,
it drops below 97% for fluctuations of the Rydberg level (top panel) and
95% for amplitude fluctuations (bottom panel). Note that in contrast to
the analytic mixed scheme, the optimized pulses do not require unfeasibly
large pulse amplitudes. In contrast, the scheme using only simultaneous
pulses but more realistic pulse amplitudes would be even more sensitive –
particularly to fluctuations of the Rydberg level (cf. the drop to 92% gate
fidelity in the top panel of Fig. 4.9). The price for this additional robustness
offered by the numerically optimized pulses is a slightly more complex pulse
shape and the presence of a second frequency.

It is important to note that the solutions provided by OCT are not
unique; the pulses obtained depend on the guess pulses, the exact choice of
optimization functional, and on arbitrary scaling parameters such as the



4.4. Optimal control 85

0 20 40 60 80 100

time (ns)

0.0
0.2
0.4
0.6
0.8
1.0 00

int

r0

0r

rr

0.0
0.2
0.4
0.6
0.8
1.0

p
op

u
la

ti
on 01

i1

r1

0.0
0.2
0.4
0.6
0.8
1.0

10

1i

1r

Figure 4.13: Dynamics under the optimized pulses shown in Fig. 4.12. The gate
error is 1.92× 10−4.

λj in Eq. (4.12). By tuning these parameters carefully, the optimization
may be steered towards desired pulse features. It is also possible to add
additional constraints to the optimization functional in order to preselect
optimization pathways [158]. For example, the |rr〉 state could be defined
as a forbidden subspace in order to enforce the blockade regime. This could
be desirable, since the breaking of the Rydberg blockage can excite the
atoms vibrationally, resulting in a possible increase of gate duration due to
the additional time required to restore the original state of motion. The
vibrational motion was not taken into account in the our model. It could be
included explicitly in the optimization to determine the speed limit outside
of the blockage regime [73]. One could also include spectral constraints to
impose a pre-specified pulse bandwidth or suppress undesired frequency
components [158, 159]. Optimizing to extremely high fidelities often leads to
very large pulse amplitudes or complex pulse features that are undesirable
from an experimental point of view. Thus, it is usually best to stop the
optimization as soon as the reached fidelities are “good enough”, as was done
for the optimized pulses shown as solid blue and yellow lines in Fig. 4.14.
In principle, however, pulses of much higher fidelity and robustness than
those shown here can be found. This is illustrated by the dotted green
line in Fig. 4.14, which shows the result of a further optimization of the
pulse for T = 800 ns. While these pulses achieve a gate fidelity well above
that required for fault tolerant quantum computation [198, 199, 186], the
resulting highly optimized pulses have unfeasibly large pulse amplitudes of
1100 MHz and 330 MHz for the blue and red laser, respectively.
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Figure 4.14: Expectation value of the gate error in the presence of fluctuations in
the |rr〉 state due to DC electric fields (top), and pulse amplitude fluctuations
(bottom). The red dashed curve shows the most robust analytical pulse, cf. the red
dashed curve in Fig. 4.9. The solid yellow and blue lines are for the optimized
pulses shown in Figs. 4.10, 4.12, respectively. The dotted green line is for a further
optimized pulse at T = 800 ns, without any consideration of limits on the pulse
amplitude or complexity. Note that both panels show the robustness for same set
of pulses, i.e. the pulses were optimized with respect to both variations in the
two-photon detuning and the pulse amplitude.

The results presented here illustrate the power of optimal control theory
as a tool for finding pulses that are robust both with respect to decoherence
and to experimental fluctuations. For realistic noise levels, we were able to
generate pulses that yield gate errors well below 10−3, with errors below 10−5

being reached when no limits are placed on pulse amplitudes. Optimized
pulse sequences are not only more robust but can also be of much shorter
duration, significantly shorter than those obtained from the best analytical
schemes. This is a considerable advantage, allowing to perform a larger
number of gates before decoherence effects become significant. The technique
of optimizing over an ensemble of perturbed Hamiltonians in order to achieve
robust pulses is not limited to the example of Rydberg gates, but is generally
applicable to other systems and optimizations problems.



5
Quantum Gates with

Superconducting Transmon Qubits

Superconducting circuits have emerged as one of the most promising envi-
ronments for quantum information processing. Unlike most other implemen-
tations (e.g. trapped atoms like the Rydberg gate discussed in chapter 4),
they are macroscopic, in the sense that the relevant degrees of freedom
are the quantities of electrical circuits, such as charge, current, or flux.
However, unlike in classical electrical circuits, these variables are now fully
quantized and described by a wave function. The quantum behavior results
from the electrons forming Cooper pairs and condensing to a collective
quantum state as the system is cooled below some (material-dependent)
critical temperature Tc [200].

From a technical perspective, superconducting qubits have the significant
advantage of building upon fabrication techniques used in standard inte-
grated circuits. A superconducting layer of usually aluminum or niobium
is layered on a silicon wafer [201, 202]. The circuit elements are then pat-
terned using the standard tools of optical or electron-beam lithography and
chemical etching: a photo-sensitive “resin” material is added to the chip and
then illuminated with UV light or an electron beam through a mask. Then,
the developed resin is removed and the exposed superconducting material
is etched away, or alternatively, electrical leads are deposited in the resin
gaps [203]. For superconducting circuits relevant to quantum computing,
one of the central components is the Josephson junction, described in sec-
tion 5.1. It consists of two layers of superconducting material separated by

87
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an insulating layer. This insulating layer is generally created by oxidation
of the superconducting material [201, 202]. Using these well-established
production techniques, a quantum computer based on a superconducting
architecture could readily be produced industrially, provided that the more
fundamental challenges in building a large-scale quantum processor can be
met, i.e., implementing universal quantum gates and scaling the circuit to a
significant number of qubits while maintaining coherence.

This chapter reviews the fundamentals of superconducting qubits, with
emphasis on the transmon design. Two transmons can be coupled via
a shared transmission line, allowing for the exchange of virtual photons.
Using perturbation theory, an effective model can be derived in which
the qubit-cavity coupling has been eliminated. This motivates the two-
transmon Hamiltonian used in chapters 6 and 7. We discuss some of the
gate mechanisms that have been used to implement two-qubit gates using
transmons and explore possibilities for optimal control.

5.1 The Josephson Junction

Al

Al

AlO CJ I0=̂

Figure 5.1: Josephson junction. The junction consists of two superconducting
layers of e.g. aluminum, separated by an insulating layer, e.g. aluminum oxide.
The junction combines the properties of a capacitor, characterized by CJ or the
charging energy EC ∝ 1

CJ
, and an inductive tunneling current, characterized by I0

or the Josephson energy EJ ∝ I0.

The Josephson junction consists of two superconducting leads separated
by a thin insulating layer, as shown in Fig. 5.1. This structure acts as a
capacitor with capacitance Cj . As known from classical electrodynamics, if
one of the leads (capacitor plates) holds a charge of Q, the energy stored in
the capacitor is

Ecapacitor = 1
2
Q2

CJ
. (5.1)
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junction parameters
I0 critical current
Cj junction capacitance
Qr offset charge
Ec charging energy, Ec = 1

2
(2e)2

CJ

EJ Josephson energy, EJ = φ0I0
LJ0 effective inductance, LJ0 = φ0

I0

dynamic quantities
Φ(t) branch flux of junction, see Eq. (5.3); φ(t) ∈ R
I(t) Josephson current, see Eq. (5.2); I(t) ∈ R
δ(t) “phase”, δ(t) = 2πΦ(t)

Φ0
= Φ(t)

φ0
; δ ∈ R

θ(t) condensate phase diff., θ(t) = δ(t) mod 2π; θ(t) ∈ [0, 2π)
LJ(δ) Josephson inductance, LJ(δ) = LJ0 cos−1 δ
n(t) number of tunneled cooper pairs; n(t) ∈ N

fundamental constants
Φ0 flux quantum, Φ0 = h

2e
φ0 reduced flux quantum, φ0 = Φ0

2π

Table 5.1: Summary of quantities and constants used for the characterization of a
Josephson junction. The first group contains static parameters that depend on the
geometric properties of the junction at production. An exception is EJ which can
also be made tunable by splitting the junction in two and running an external flux
through the resulting loop. The second group are the dynamic quantities from
which the tunneling energy and the capacitive energy of the junction derive, and
which allow to formulate the Hamiltonian. The “phase” δ(t) is more properly
known as the “gauge-invariant phase difference” across the junction.
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In addition to the capacitive effect, Cooper pairs of electrons can tunnel
through the insulating layer (owing to the quantum mechanical nature of
the circuit), resulting in a Josephson current that is described by [204]

I(t) = I0 sin δ(t) = I0 sin 2πΦ(t)
Φ0

= I0 sin Φ(t)
φ0

, (5.2)

where I0 is the maximum current the junction can support, and δ(t) is the
phase difference of the wave function on each side of the junction, which is
directly related to the branch flux [205]

Φ(t) =
∫ t

−∞
V (t′)dt′ (5.3)

of the junction element, where V (t) is the voltage across the junction. All
the quantities typically used to describe the junction are listed in Table 5.1.

If the junction holds an initial charge difference (“offset charge”) of Qr
and n Cooper pairs of electrons (charge 2e) tunnel through the junction,
the capacitive energy of the junction according to Eq. (5.1) is

Ecapacitive
jj = Ec

(
n− Qr

2e

)2
, Ec = 1

2
(2e)2

CJ
. (5.4)

The offset charge Qr/2e will generally be much larger than n, and cannot
easily be controlled during the production process. The energy due to the
tunneling current is

Einductive
jj =

t∫
−∞

I(t′)V (t′) dt′ =
Φ(t)∫
0

I0 sin
( Φ
φ0

)
dΦ = −EJ cos δ , (5.5)

with EJ = I0φ0, δ = Φ
φ0
, cf. Table 5.1, and V (t) = dΦ(t)

dt , cf. Eq. (5.3).
Together, both terms yield the Hamiltonian

Ĥjj = Ec

(
n̂− Qr

2e

)2
− EJ cos θ̂ . (5.6)

where n̂ and θ̂ are quantum variables obeying the canonical commutator
relationship [θ̂, n̂] = i~.

5.2 The Cooper Pair Box
The Hamiltonian in Eq. (5.6) is dominated by the value of Qr, which takes
a random value during the production process and is subject to significant
noise fluctuations [206]. This makes the naked Josephson junction ill-suited
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Figure 5.2: Lowest five eigenvalues of the charge qubit Hamiltonian, obtained
from diagonalization of Eq. (5.9), depending on the offset charge ng, for different
ratios of the qubit’s Josephson and charging energies, cf. [212].

as a qubit. To obtain a well-defined system, there are three “traditional”
superconducting qubit designs that add further elements to the Josephson
junction circuit [207]: the Cooper pair box (“charge qubit”) the flux qubit,
and the phase qubit.

The most straightforward of these is the charge qubit, obtained by biasing
the Josephson junction with a voltage source and placing it in series with
a capacitance Cg [208, 209]. The form of the resulting Hamiltonian is
identical to the naked Josephson junction in Eq. (5.6), but the offset charge,
respectively the charging energy is now a well-defined quantity, determined
by Cg and the bias voltage U :

ĤCPB = 4EC (n̂− ng)2 − EJ cos θ̂ , (5.7)

with
4EC = (2e)2

2 (CJ + Cg)
, ng = Qr

2e + CgU

2e . (5.8)

EJ can be made tunable by splitting the Josephson junction and running
a magnetic flux through the resulting loop [210]. Eq. (5.7) can be written
entirely in the charge basis [211],

ĤCPB = 4EC (n̂− ng)2 − EJ
2
∑
n

(|n〉〈n+ 1|+ |n+ 1〉〈n|) . (5.9)

The qubit is encoded in the lowest two eigenstates of ĤCPB . The eigenvalues
depend parametrically on the offset charge ng; this dependence is named
the charge dispersion. The separation of qubit levels as well as the charge
dispersion depend on the ratio EJ/EC , as shown in Fig. 5.2. Fluctuations
in Qr (and thus ng) lead to dephasing of the qubit. Therefore, the qubit is
usually operated at the charge degeneracy point ng = 0.5, where the charge



92 5. Quantum Gates with Superconducting Transmon Qubits

1

2
3

4

5

6

U

100 µm

Figure 5.3: Optical image of transmon inside of a resonator, adapted from [211].
The circuit consists of five superconducting islands: the lower ground plane (1),
the lower transmon island (2), the upper transmon island (3), the coplanar wave
guide center pin (4), and the upper ground plane (5). The zoom shows the split
Josephson junction (6). The islands (4) and (1) are connected with a bias voltage.

dispersion is zero to first order. At ng = 0.5, small values of EJ/EC result
in the lowest two levels being separated by approximately EJ from each
other, and by approximately 8EC from the next higher level, making the
charge qubit a two-level system in very good approximation. Higher values
of EJ/EC lead to less sensitivity with respect to charge noise, as the curves
flatten out, but also decrease the anharmonicity of the levels. Both in order
to maintain a well-defined two-level system, and for technical reasons related
to the read-out of the qubit [213], EJ/EC < 1 in the traditional charge
qubit.

5.3 The Transmon Qubit

5.3.1 A Charge-Insensitive Cooper Pair Box
The transmon qubit [212] extends the charge qubit by shunting it with an
additional capacitance CB and placing it in a coplanar wave guide resonator.
We refer to this resonator also as the transmission line, or simply the cavity.
All components are shown in Fig. 5.3. The capacitance CB is between the
islands (2) and (3). The capacitance Cg is between island (3) and (4). A
full circuit analysis [212, 211, 214] shows that the Hamiltonian takes the
same form as that of the charge qubit, Eq. (5.7). However, CB increases
the denominator of the charging energy, Eq. (5.8), lowering EC and thus
increasing the ratio EJ/EC to values of several tens or hundreds. The
design of the transmon exploits that with increasing EJ/EC , the charge
dispersion decreases exponentially, while the anharmonicity only decreases
algebraically [213]. Thus, one obtains a weakly anharmonic ladder that
is robust against charge noise, cf. the right panel of Fig. 5.2. Choosing
EJ � EC limits θ in Eq. (5.7) to small values, allowing to neglect ng and
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to expand the cosine potential in a Taylor series as cos θ ≈ 1 − θ2

2 + θ4

24 .
Rewriting the charge and phase states in terms of ladder operators b̂, b̂†,

n̂ = i
2

(
EJ

2EC

) 1
4 (

b̂† − b̂
)

θ̂ =
(2EC
EJ

) 1
4 (

b̂† + b̂
)

(5.10)

results in the Duffing oscillator (up to a constant)

ĤT =
√

8ECEJ b̂†b̂− EC
12

(
b̂† + b̂

)4
. (5.11)

Leading order perturbation theory brings this to [212, 215]

ĤT = ωqb̂
†b̂ + α

2 b̂†b̂†b̂b̂ , (5.12)

with the qubit frequency ωq ≈
√

8EJEC − EC and the anharmonicity
α = −EC .

Besides contributing to the charging energy, the waveguide cavity is also
central for control and readout of the transmon. The interaction between
the qubit with the ladder operator b̂, b̂† and the cavity with ladder operators
â, â† is described by [216]

HI = g
(

b̂† + b̂
) (

â† + â
)
, (5.13)

where g is the interaction strength. The transmon system is operated in
the strong coupling regime where g is much larger than the qubit and cavity
decay rates γ and κ. This allows excitations to be exchanged between
the qubit and the cavity. If g � ωq, ωc, a rotating wave approximation
(RWA) yields a Jaynes-Cummings Hamiltonian, in which excitations are
preserved [217],

HI = g
(

b̂†â + b̂â†
)
, (5.14)

with
γ, κ� g � ωq, ωc . (5.15)

The total Hamiltonian of the transmon and the transmission line in the
RWA is

ĤT = ωqb̂
†b̂ + α

2 b̂†b̂†b̂b̂ + g(b̂†â + b̂â†) + ωcâ†â . (5.16)

It is also possible to consider the transmon in the ultra-strong coupling
regime, where the rotating wave approximation breaks down [218]. The
eigenstates of Eq. (5.16) mix the bare eigenstates of the qubit and the cavity;
the degree of mixing is determined by the ratio of the detuning ωc − ωq and
the coupling strength g. In the resonant regime, ωc = ωq, the eigenstates of
ĤT are equal superpositions of qubit and cavity eigenstates. This regime
is used for measurement and characterization of the transmon device [219].
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For the implementation of quantum gates, the qubit is usually tuned to the
dispersive regime,

|ωc − ωq| � g . (5.17)

The eigenstates are now very close to the bare qubit and cavity eigenstates.
The slight mixing shifts the energy of qubit and the cavity by a small amount
χ, see section 5.4.

The parameters of the qubit and the coupling to the cavity can be
engineered with great flexibility. Qubit frequencies can be readily set
anywhere from 2 to 15 GHz, and couplings can range from a few kilohertz
to nearly 1 GHz [220]. Moreover, when implemented with a split Josephson
junction as depicted in Fig. 5.3, the qubit frequencies can be dynamically
tuned by applying a magnetic flux through the junction loop.

5.3.2 Coupled Transmon Qubits

Connecting two transmon qubits to the same transmission line [221] creates
an effective coupling between them. Each qubit is characterized by its own
frequency, anharmonicity, and coupling strength to the cavity, ω1, α1, g1,
respectively ω2, ω2, α2 in Hamiltonian (5.16). Together, the Hamiltonian
for the two qubits and the shared transmission line with frequency ωc reads

Ĥ2T =
∑
q=1,2

[
ωqb̂

†
qb̂q + αq

2 b̂†qb̂
†
qb̂qb̂q + gq(b̂†q â + b̂qâ†)

]
+

+ ωcâ†â + ε∗(t)â + ε(t)â† .
(5.18)

We have included a driving term with the external field ε(t) on the trans-
mission line. The field ε(t) is taken as complex to account for the possibility
of a rotating wave approximation. As described in appendix B, this shifts
ω1, ω2, ωc by the frequency of the lab frame ε(t) and allows to describe the
field ε(t) by its shape only.

The interaction with the cavity allows for the exchange of virtual pho-
tons [221], where an excitation moves from qubit (1) to qubit (2) without
populating the cavity. Driving ε(t) at the qubit frequency results in a
cavity-mediated excitation of the qubit. Thus, the shared transmission line
resonator allows for extensive control over the two-transmon system.

In addition to the coupling via the transmission line, the qubits could also
be coupled directly, either capacitively or inductively [214], adding a static
interaction term J(b̂†1b̂2 + b̂1b̂†2) to Eq. (5.18), where J is the strength of the
interaction. In this case, the interaction must be activated by dynamically
tuning the qubit frequencies into resonance, see section 5.5.
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5.4 Effective Description of the Transmon in the
Dispersive Regime

Understanding how the cavity mediates an effective interaction between
the qubits is possible by partially diagonalizing the Hamiltonian (5.18) to
remove the qubit-cavity coupling. First, Eq. (5.18) is rewritten in the energy
basis,

b̂ =
∑
i

√
i |i− 1〉〈i| , (5.19)

to read

Ĥ2T =
∑
q=1,2

∑
i

ω
(q)
i Π̂(q)

i + ωcâ†â︸ ︷︷ ︸
Ĥ0

+
∑
q=1,2

∑
i

g
(q)
i

(
Ĉ+ (q)
i â + Ĉ− (q)

i â†
)

︸ ︷︷ ︸
ĤI

+

+ ε∗(t)â + ε(t)â† ,
(5.20)

with the qubit energy levels

ω
(1,2)
i = iω1,2 + α1,2

2 (i2 − i) , (5.21)

the qubit-cavity coupling

g
(1,2)
i =

√
i g1,2 , (5.22)

and the projectors and jump operators

Π̂(1,2)
i = |i〉〈i|1,2 , Ĉ+ (1,2)

i = |i〉〈i− 1|1,2 , Ĉ− (1,2)
i = |i− 1〉〈i|1,2 .

(5.23)
The unitary transformation that decouples qubits and cavity takes the

form
Ĥ′ = eŜĤe−Ŝ . (5.24)

It is known as a Schrieffer-Wolff-transformation, with

Ŝ = −
∑
q=1,2

∑
i

g
(q)
i

ω
(q)
i − ω

(1)
i−1 − ωc

(
â†Ĉ− (1)

i − âĈ+ (1)
i

)
. (5.25)

Ŝ is constructed such that [Ŝ, Ĥ0] = −ĤI , cf. Ref. [222]. Therefore, to first
order, it removes the unwanted interaction term ĤI . Eq. (5.24) is evaluated
using the Hadamard-Lemma,

Ĥ′ = eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] + 1
2[Ŝ, [Ŝ, Ĥ]] + . . . (5.26)
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After some algebra [223, 216], one obtains the transformed Hamiltonian

Ĥ′ = ωcââ† + ε∗(t)â + ε(t)â† +
∑
q=1,2

Nq−1∑
i=0

(χ(q)
i − χ

(q)
i+1)â†âΠ̂(q)

i +

+
∑
q=1,2

Nq−1∑
i=0

[
(ω(q)
i + χ

(q)
i )Π̂(q)

i + g
eff (q)
i ε(t)(Ĉ+ (q)

i + Ĉ− (q)
i )

]
+

+
∑
ij

Jeff
ij (Ĉ− (1)

i Ĉ+ (2)
j + Ĉ+ (1)

i Ĉ− (2)
j ) ,

(5.27)

truncated to Nq transmon levels, with the “effective” quantities

g
eff (1,2)
i = g

(1,2)
i

(ω(1,2)
i − ω(1,2)

i−1 − ωc)
, (5.28a)

Jeff
ij = 1

2g
eff (1)
i g

(2)
j + 1

2g
eff (2)
j g

(1)
i , (5.28b)

χ
(1,2)
i = (g(1,2)

i )2

(ω(1,2)
i − ω(1,2)

i−1 − ωc)
. (5.28c)

All terms in which geff (1,2)
i appears in higher than quadratic order have

been neglected. The qubit levels obtain a Lamb-shift χi. Moreover, the term
proportional to â†âΠ̂i can be interpreted either as a qubit-dependent shift
of the cavity levels, or a further ac Stark shift of the qubit levels depending
on the number of photons in the cavity. The mediated interaction between
the two qubits is given by Jeff

ij . Lastly, we see that ε(t) can drive the qubit
transitions with a reduced transition strength geff

i . The Schrieffer-Wolff-
transformation is a perturbative treatment into orders of geff , which must
be small, corresponding to the dispersive condition (5.17). Thus, Eq. (5.24)
is also known as the dispersive transformation, and is closely related to the
method of adiabatic elimination [224].

Assuming that the frequency of ε(t) is far detuned from ωc, such that
the cavity is never populated, (〈â†â〉 = 0), it can be fully integrated out and
one obtains an effective Hamiltonian for the reduced system,

Ĥred =
∑
q=1,2

Nq−1∑
i=0

[
(ω(q)
i + χ

(q)
i )Π̂(q)

i + g
eff (q)
i ε(t)(Ĉ+ (q)

i + Ĉ− (q)
i )

]
+

+
∑
ij

Jeff
ij

(
Ĉ− (1)
i Ĉ+ (2)

j + Ĉ+ (1)
i Ĉ− (2)

j

)
.

(5.29)

The derivation of effective models using Schrieffer-Wolff transformations,
perturbation theory, and adiabatic elimination theory is an extensive field
of study. Some of the methods are reviewed in Ref. [216].
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Depending on the parameter regime, often a series of additional Schrieffer-
Wolff transformations on Eq. (5.27) is employed to further reduce the degrees
of freedom, e.g. to decouple well-separated subspaces [222]. The validity
of the dispersive and any further transformation to a given order must be
verified for each choice of parameters.

Approximately, Eq. (5.29) takes the form of an effective Jaynes-Cummings
Hamiltonian on the qubits [222]

Ĥred ≈
∑
q=1,2

((
ω′q −

αq
2

)
b̂†qb̂q + αq

2
(

b̂†qb̂q
)2)

+

+ Jeff
(

b̂†1b̂2 + b̂1b̂†2
)

+ ε(t)
(

b̂1 + b̂†1 + λb̂2 + λb̂†2
)
,

(5.30)

where the Lamb shifts have been absorbed in ω′q and λ expresses the
relative effective driving strength between the two qubits. While Eq. (5.30)
matches the level-dependence of the effective quantities in Eq. (5.28) only
approximately, it is still useful in practical applications. It is valid for
weak anharmonicities and low qubit excitation [216]. Moreover, deviations
from the exact theory may be compensated by measuring the effective
parameters experimentally, instead of deriving them from first principles.
The Hamiltonian is used as a simplified model for transmon qubits in
chapters 6 and 7.

5.5 Gate Mechanisms for the Transmon
A variety of approaches have been used to implement entangling two-qubit
gates on transmon qubits. We give a brief overview over some of the
techniques that have been realized experimentally.

The conceptually most straightforward method is the Direct Resonant
iSWAP (DRI) Gate [225]. The transmons are coupled statically with a
capacitor, yielding an interaction on the order of 4 MHz. Since there is no
drive on the transmission line resonator during the implementation of the
gate, the cavity can be integrated out and the transmon truncated to two
levels. The effective Hamiltonian therefore reads simply as

Ĥ = −ω1
2 −

ω2
2 + g σ̂yσ̂y . (5.31)

The interaction is “activated” by tuning the qubit frequencies into resonance
on a time scale 1

g � τ � 1
ω1,2

, using a magnetic flux through the split
Josephson junction. After a duration of T = 1

8g , it generates a
√
iSWAP up

to single qubit transformations.
The higher-level resonance-induced dynamical CPHASE (DP) gate [226]

explicitly exploits the effective interaction mediated by the cavity. It models
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the system with a generalized form of the Jaynes-Cummings-Hamiltonian
of Eq. (5.18) as

Ĥ = ωcâ†â +
∑
q=1,2

Nq−1∑
i=0

ω
(q)
i |i〉〈i|q +

(
â + â†

)Nq−1∑
i,j=0

g
(q)
jk |i〉〈j|q

 , (5.32)

with all anharmonicities absorbed in ω(q)
i and with a coupling matrix g(q)

jk .
The qubit frequencies again are flux-tunable. For the parameter choices in
Ref. [226], ωc = 6.9 GHz and g1 = 199 MHz, g2 = 183 MHz, the logical level
|02〉 decreases more rapidly than level |11〉 when tuning the qubit frequencies.
For a specific flux value, these two levels would become degenerate. However,
the cavity also mediates a coupling |11〉 ↔ |02〉, cf. Eq. (5.30), causing an
avoided crossing at the degeneracy point. The resulting large shift in |11〉
induces a relative phase and thus implements a CPHASE gate on a time
scale of 30 ns, without applying a field to the waveguide resonator. However,
this neglects the time required to tune the qubits into the interaction regime.
As the avoided crossing is approached, the tuning speed must be sufficiently
slow to remain adiabatic, inversely proportional to the splitting between
|11〉 and |02〉.

Using the flux-tunability of the qubit frequency has the disadvantage
of reduced coherence times due to flux noise and the risk of unwanted
interactions during the tuning process [227]. An alternative is the use of
shaped microwave pulses on the transmission line resonator.

The resonator-sideband-induced (RSI) gate [228] employs sideband tran-
sitions [229] common in trapped-ion implementations of quantum comput-
ing [46, 230]. Unlike the DRI or DP gates, the system is actively driven
with pulses on the transmission line. The basic idea is to entangle the
qubit state with the first excitation of the cavity, and then to transfer this
entanglement onto the two-qubit state. The generation of entanglement can
be understood by considering the initial state |000〉, where the quantum
numbers indicate the excitation of the first qubit, second qubit, and the
cavity. A series of pulses is applied, consisting of

1. a π pulse (see appendix C) on the second qubit,

2. a π
2 pulse on the sideband of the first qubit, and

3. a π-pulse on the sideband transition of the second qubit.

The sideband transition excites or de-excites both the qubit and the cavity
simultaneously via a two-photon transition. This transforms the qubit-
qubit-cavity state as (neglecting global phases)

|000〉 → |010〉 → 1√
2

(|010〉+ |111〉)→ 1√
2

(|010〉+ i |100〉) .
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In total, it brings the initial separable two-qubit state to an entangled Bell
state,

|00〉 → 1√
2

(|01〉+ i |10〉) .

Note that in the last step, there exists no right-qubit blue sideband transition
for the first term |010〉, which enables the transfer of the entanglement to
the qubits. The duration of the full pulse sequence for the parameters in
Ref. [228] is T = 150 ns. As described in Ref. [231], the mechanism can
be extended to implement a CNOT gate. Generally, many of the gate
mechanisms for trapped ions can be translated to superconducting qubits,
with the cavity taking the place of the vibrational excitation of the ions.

Two further gate implementations for transmon qubits exploit specific
resonance conditions with levels outside of the logical subspace. Both of
these start from an effective model, Eq. (5.30), where the qubit-cavity
interaction has been transformed into an effective qubit-qubit interaction,
and an effective driving term for the qubit transitions. Thus, we describe
the state of the system in the basis |ij〉, where i and j are the excitation
quantum numbers of the left and right qubit, respectively. While in general,
the effective interaction is weak, building resonances into the higher qubit
levels can significantly enhance the generation of entanglement. In the case
of the Bell-Rabi (BR) Gate [222], the transmon is engineered such that
the qubit-qubit detuning is close to the anharmonicity of one of the qubits,
ω1 − ω2 ≈ α1. This brings the levels |11〉 and |20〉 into resonance. Driving
at a frequency slightly detuned by δ from the center between both qubits,

ωd = 1
2 (ω1 + ω2)− δ , (5.33)

the levels |00〉, |11〉, |21〉 are close to zero in the rotating frame at ωd, and far
detuned from the remaining levels. Using a Schrieffer-Wolff transformation
similar to the one discussed in section 5.4, the coupling between this “low-
energy manifold” and the remaining Hilbert space can be eliminated. In
the frame defined by the transformation, it can be shown [222] that there
is a resulting two-photon transition between the state |00〉 and |11〉. With
a specific choice of the drive-detuning δ, this implements a gate that is
equivalent to

√
iSWAP.

TheMicrowave-Activated CPHASE (MAP) Gate [227] uses an alternative
resonance condition. Here, the qubits are engineered such that |12〉 and
|03〉 align, which translates to the condition

ω1 − ω2 = 2α2 . (5.34)

The effective coupling between these two levels shifts them, thus lifting the
degeneracy of the two transitions |01〉 ↔ |02〉 and |11〉 ↔ |12〉. The system
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is driven with a detuning of δ from these two transitions,

ωd = ω2 + α2 − δ . (5.35)

With the resonance condition in Eq. (5.34), ωd takes the same form as
Eq. (5.33). In the rotating frame with ωd, the combined Hamiltonian (drift
Hamiltonian and drive Hamiltonian for a field with amplitude Ω) can be
fully diagonalized. The field-dressed level |11〉 obtains a Stark shift. The
shift induces a CPHASE gate, with the total interaction energy

ζ ≈ ζ0 + Ω2

2δ ζ2 , (5.36)

where ζ0 is the static interaction and the term proportional to ζ2 is the
field-induced interaction, both defined in Ref. [227]. For the parameters
chosen there, a fully entangling gate is reached after 510 ns. A detailed
discussion of the effective Hamiltonian and the gate mechanism for both
the BR and MAP gate may be found in Ref. [216].

5.6 A Holonomic Phasegate
We might wonder whether we can generalize the idea of using Stark shifts
for the implementation of gates to include the cavity. Instead of inducing
the shift in the MAP gate by driving an off-resonant transition to higher
qubit levels, it has been proposed to use a transition to a cavity level,
implementing a Driven Resonator-Induced CPHASE (RIP) Gate [227, 232].
As an alternative picture, we could think of the resonance induced dynamical
phase (DP) gate discussed in section 5.5, but instead of flux-tuning the
qubit frequencies into resonance, the necessary shifts would be obtained
by driving the system with an off-resonant microwave field near the cavity
frequency.

We consider the full Hamiltonian of two transmon qubits coupled via a
shared transmission line (cavity), Eq. (5.18), that is driven at a frequency
ωd detuned by a few tens of MHz from the cavity frequency ωc,

ε(t) = ε0S(t) cos(ωdt), S(t) ∈ [0, 1] . (5.37)

The Hamiltonian can be transformed to a rotating frame at ωd, see ap-
pendix B, with the basis transformation

ÛRWA(t) =
∑
ijn

ei(i+j+n)ωdt |ijn〉〈ijn| , (5.38)

where i, j, n are the quantum numbers for the excitation of the left qubit,
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right qubit, and the cavity, respectively. Assuming Eq. (5.37), the field in
the rotating wave approximation (RWA) is

Ω(t) = 1
2ε0S(t) . (5.39)

Going to the RWA allows to obtain the field-dressed energy levels by
diagonalization of ĤRWA(t) for a fixed value of the field amplitude ε0. A
two-qubit interaction

Eγ(ε0) = E00(ε0)− E01(ε0)− E10(ε0) + E11(ε0) (5.40)

results if the energy levels that define the logical subspace are shifted non-
linearly. Keeping the field at amplitude ε0 for duration T implements a
diagonal gate

D = diag
{
eiφ00 , eiφ01 , eiφ10 , eiφ11

}
, (5.41)

where the φ00 = eiE00(ε0)T , and equivalently for φ01, φ10, φ11. As discussed
in chapter 2, this gate is a CPHASE gate with the entangling phase

γ(ε0, T ) = Eγ(ε0)T , (5.42)

cf. Eq. (2.30), up to single-qubit operations.
However, the implementation of the gate assumes that the population is

in the field-dressed logical eigenstates at every point in time. This can be
ensured by switching the pulse shape S(t) on and off adiabatically: at t = 0,
the pulse is off and the system is in one of the logical eigenstates, e.g. |00〉.
The pulse is then slowly switched on, reaching its peak value ε0 at t = T/2,
after which it is slowly switched off again, reaching zero at t = T . If the
switch-on and switch-off is sufficiently slow, then according to the adiabatic
theorem, the system will remain in the field-dressed logical eigenstate with
energy e.g. E00(Ω(t)) at every point in time. Specifically, the derivative of
Ω(t) must be sufficiently small to avoid jumping over any avoided crossing,
as described by Landau-Zener’s formula [233]. At final time T , the system
returns to its original state, but with a geometric Berry phase [234], e.g.

φ00 =
∫ T

0
E00(Ω(t)) dt . (5.43)

Thus, following the terminology of Ref. [235], we refer to this realization of
a diagonal gate as a holonomic phasegate.

5.6.1 Entanglement Creation
The effective entangling energy obtained at final time T depends not only
on the peak amplitude of the pulse, but also on the choice of the system
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Figure 5.4: Entanglement (concurrence) generated after T = 200 ns, over the peak
amplitude of the pulse, for different choices of pulse driving frequency ωd. The top
and bottom panels show results for a cavity frequency of 860 MHz left and right of
the qubits, respectively. The remaining parameters are listed in Table 5.2. The
gates implemented at the select points labeled 1–3 are analyzed in Table 5.3.

cavity frequency ωc 6.00, 8.11 GHz
left qubit frequency ω1 6.86 GHz
right qubit frequency ω2 7.25 GHz
qubit anharmonicity α1, α2 -300 MHz
qubit-cavity coupling g1, g2 70 MHz

Table 5.2: Parameters for the transmon Hamiltonian Eq. (5.18) for a holonomic
phase gate.

point 1− C pop. loss 〈i, j〉max 〈n〉max nq nc

1 1.56× 10−3 1.70× 10−2 1.55 7.70 10 25
2 1.43× 10−2 9.89× 10−3 3.04 12.92 11 30
3 3.19× 10−3 3.60× 10−3 1.04 48.46 6 70

Table 5.3: Properties of gates implemented for the parameters at labeled points in
Fig. 5.4. For each point, the entanglement error 1− C is given, cf. Fig. 5.4 for the
values of the concurrence C. Furthermore, the loss of population from the logical
subspace at final time T , the peak expectation value 〈i, j〉max at t = T

2 for the
excitation of either one of the qubits, and the peak expectation value 〈n〉max for
the excitation of the cavity are listed. Lastly, nq and nc are the number of qubit
and cavity levels that must be taken into account to reach numerical convergence.



5.6. A Holonomic Phasegate 103

parameters and the driving frequency of the microwave pulse. This is
explored in Fig. 5.4, showing the entanglement generated by a Blackman
pulse of duration T = 200 ns with varying peak amplitude ε0. The Blackman
shape is nearly identical to a Gaussian centered around T

2 with width σ = T
6 ,

but is exactly zero at t = 0 and t = T , see Eq. (4.7). The qubit parameters
are listed in Table 5.2. Even in the field-free case, ε0 = 0, the static coupling
between qubit and cavity induces a Lamb-shift in the qubit levels. To first
order, these shifts are described by χ(1,2)

i in Eq. (5.29). Considering only
the levels of the logical subspace, the cavity-mediated interaction energy is
ζ ≡ Eγ(ε = 0) with Eγ defined in Eq. (5.40). At final time T , this results
in the entanglement

C(ζ, T ) = sin
[1

2ζ T
]
, (5.44)

representing the y-intercept in Fig. 5.4. Note that for the DP gate, the
qubit parameters are flux-tuned to ensure C(ζ, T ) = 1. Here, the qubit
parameters are not tuned, but the interaction due to the pulse-induced Stark
shifts (from the combination of all terms proportional to â, â† in Eq. (5.29),
and higher order) yields the entanglement for the realization of the gate.
For a two-qubit gate, it must add to the always-on entanglement due to ζ,
whereas for single qubit gates, it must cancel ζ. The field-free parameters
in Table 5.2 are chosen such that the entanglement created due to ζ at time
T is less than 0.5, to ensure that the realization of single-qubit gates is not
harder than that of two-qubit gates.

The magnitude of the Stark shift is proportional to |ε0|2, i.e., it depends
quadratically on the field. This reflected in the parabolic shape of the curves
in Fig. 5.4.

Generally, the magnitude and sign of the Lamb and Stark shifts depends
on the magnitude and sign of the qubit-qubit detuning, the qubit-cavity
detuning, and the cavity-drive detuning. Instead of an exact theoretical
analysis, based on Eq. (5.29) and higher order terms (a procedure that
quickly becomes too tedious to perform by hand), we can obtain empirical
insight into how these quantities affect the generation of entanglement from
Fig. 5.4.

The two panels consider the situation where the cavity frequency is left
or right of the qubits, while the qubits are at fixed frequencies ω1 and ω2,
see Table 5.2. In both cases, the absolute value of the qubit-cavity detuning
is the same, but the sign of the detuning changes. This leads to a change in
the always-on interaction ζ, resulting in less entanglement in the field-free
case when ωc > ω1,2.

Furthermore, when higher levels of the transmon are taken into account,
the Hamiltonians for the two choices of ωc are in fact not symmetric
with respect to the qubits: With a negative anharmonicity, higher qubit
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transitions are closer to the cavity frequency if ωc < ω1,2 and increasingly
farther detuned if ωc > ω1,2. Since avoided crossings with higher levels can
be relevant for the resulting shifts in the levels of the logical subspace, this
can have considerable impact on the implementation of the gate.

The choice of the drive frequency wd as either smaller or larger than the
cavity frequency determines whether the Lamb and Stark shifts interfere
constructively or destructively; driving left of cavity (solid blue and orange
lines) results in constructive interference, whereas driving right of the cavity
(dashed red and green lines) results in destructive interference. This is
independent of the sign of the qubit-cavity detuning, as the same behavior
is observed in both panels.

In the case of constructive interference, we observe that the rate at which
entanglement is created is proportional to ζ , from the greater slope of the
solid blue and orange curve in the top panel, compared to the bottom panel.
This may be expected from Eq. (5.29) by the observation that both the
Lamb shift and the Stark shift contain χ(q)

i as the leading term. Interestingly,
in the case of destructive interference (ωd > ωc) for a driving frequency
close to the cavity (dashed red curve), we do not observe the same behavior;
this curve is simply shifted down in the bottom panel. Presumably, this
choice of parameters causes higher order terms in the Stark shift to cancel
the leading order term.

The implication of this is that for small values of ζ, the fastest way to
realize an entangling gate (respectively, using the smallest pulse amplitude)
may be to choose a drive frequency such that the entanglement from the
Lamb and the Stark shift interfere destructively. For small pulse amplitudes,
respectively short durations, the same drive frequency could be used to
implement both single qubit gates (ε0 = 125 MHz for the red curve in the
bottom panel), while stronger drives, respectively longer durations, would
allow the realization of an entangling gate (point 3 at ε0 = 425 MHz in
the bottom panel). In contrast, for the top panel one would implement
entangling gates at points labeled 1 or 2, but switch the drive frequency to
ωd > ωc for single-qubit gates.

Setting the drive frequency closer to that of the cavity increases the Stark
shift significantly, cf. (5.36), as shown by the greater slope of the orange and
red curves relative to the blue and green curves, in both panels. However,
getting too close to the cavity will drive up cavity population significantly.
Also, it will cause non-adiabatic effects. That is, the dynamics might jump
over at least some of the avoided crossings. These are hinted at by kinks
in the curves of Fig. 5.4. In more detail, we consider the numbered points
in Fig. 5.4. The properties of the dynamics at these points are listed in
Table 5.3.

The population dynamics of the state |00〉 for the parameters at point
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Figure 5.5: Exemplary population dynamics for an adiabatic pulse. The dynamics
shown are for the propagation of the logical eigenstate |00〉 for the parameters
corresponding to point (3) in the bottom panel of Fig. 5.4. Panels (a-c) show the
expectation value of the cavity (a), the right qubit (b), and the left qubit (c), in
the bare basis. The standard deviation for each expectation value is shown in gray.
In panel (d), population in the (non-field-dressed) logical eigenstate |00〉. The
pulse shaped, normalized to the peak amplitude ε0 = 425 MHz, is shown in light
blue. The dashed gray line indicates the value 1.0.

3 are shown in Fig. 5.5. The dynamics are exemplary for an adiabatic
evolution. Note that excitations are the projection of the field-dressed states
on the non-dressed basis. This shows intuitively the effect of the off-resonant
drive: it shifts the qubit and cavity wavepackets out of their equilibrium
position proportionally to the square of the field amplitude shown in light
blue in panel (d). Most importantly, the adiabaticity of the dynamics result
in the population, panel (d), returning exactly to the initial state at final
time T , up to a Berry phase. Non-adiabatically jumping over an avoided
crossing would be reflected in the plot of the qubit and cavity excitation
by kinks and asymmetries; the excitation would no longer smoothly follow
the pulse shape. As a consequence, the system would generally no longer
return to the initial state. The non-adiabaticity can be measured by the
loss from the logical subspace,

ploss = 1− 1
4 tr

[
Ũ†Ũ

]
, (5.45)

where Ũ is the projection of the full time evolution operator onto the logical
subspace. For the three numbered points in Fig. 5.4, the value of ploss is
listed in Table 5.3. Points 1 and 2 show a significantly larger loss than point
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3. Accordingly, for point 3, there are no discernible nonadiabatic effects
visible in the population dynamics, while for points 1 and 2, the propagation
of at least one of the logical basis states has some visible deviation from the
ideal dynamics.

The shift of the qubit and cavity excitation is also inverse proportional
to the detuning of the drive from the respective frequency. Thus, in Fig. 5.5,
the cavity, panel (a), is strongly excited, whereas the right qubit, panel (b),
is only slightly excited, as it is far off-resonant. The left qubit, panel (c), is
even further detuned from the drive, and it thus receives even less excitation.
The data for the peak expectation value for the qubit and cavity excitation in
Table 5.3 illustrates this further. For points 1 and 2, ω1, ω2 < ωd < ωc, and
both qubit and cavity population increase as the pulse amplitude increases
from ε0 = 125 MHz for point 1 to ε0 = 250 MHz for point 2. However,
since for point 3, the cavity drive is much farther detuned from the qubits,
ω1, ω2 < ωc < ωd, the qubit excitation is much lower, even though the pulse
amplitude increases to ε0 = 425 MHZ.

Another observation based on the data of Table 5.3 is that for points
1 and 2, the number of qubit and cavity levels that need to be taken
into account in the dynamics is higher than the excitation would imply.
This illustrates that higher levels of the transmon can be relevant to the
realization of the gate, even without being populated. The same situation
occurs in the DP gate mechanism in section 5.5, where the |02〉 level causes
the shift in the |11〉 level, without ever being populated. When the cavity
and drive frequency are to the right of the qubits, far less qubit levels need
to be taken into account.

Beyond the parameters explored in Table 5.2 and Fig. 5.4, increasing the
qubit-cavity detuning has the effect of reducing the entanglement generated
by the Stark shift. Decreasing it to values significantly smaller than those
used in Table 5.2 leads to strongly non-adiabatic dynamics. Similarly,
lowering the value of the qubit-cavity coupling g reduces the generation of
entanglement, but enlarging it leads to undesirably large values of ζ.

The empirical observations on the parameter-dependence of the entangle-
ment creation are essential for a good choice of parameters for the realization
of a holonomic phasegate, and moreover they are relevant for guiding a more
rigorous analytical derivation. Both points 1 and 3 in Fig. 5.4 are worthwhile
for further consideration. Placing the cavity frequency to the right of the
qubits has the significant benefit of providing a lower value of ζ, allowing
to implement single and two-qubit gates with the same drive frequency,
showing more adiabatic behavior despite stronger pulse amplitudes, and
exciting the qubit levels far less. However, the strong pulses imply a large
cavity population. Placing the cavity left of the qubits allows to implement
the gate with far less pulse amplitude and cavity excitation, but runs the
risk of population loss from the logical subspace due to non-adiabatic effects.
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5.6.2 Simplex Optimization of a Holonomic Gate
Since the points in Fig. 5.4 only sample a discrete set of parameter choices,
none of the gates considered there are exact perfect entanglers, cf. the
entanglement error in Table 5.4. Furthermore, the gate duration has been
fixed at T = 200 ns. In order to find exact perfect entanglers and also to
minimize the gate duration, we can use a simplex optimization as discussed
in chapter 3 to optimize the gate duration and the peak amplitude of the
Blackman shape, for the two most promising types of parameters of Fig. 5.4,
ωd < ωc = 6.0 GHz < ω1, ω2 and ωd > ωc = 8.11 GHz > ω1, ω2. These
correspond to the most promising parameter sets from Fig. 5.4: the orange
and blue curve in the top panel, and the green and red curve in the bottom
panel. We also explore the option of using smaller pulse-cavity detunings.

The figure of merit for the optimization must encode three requirements:

1. The obtained gate must be a perfect entangler, as measured by the
non-local phase γ defined in Eq. (5.42), which should take the value
π.

2. The gate duration T should be as short as possible.

3. The dynamics should be adiabatic, as measured by population loss
from the logical subspace, Eq. (5.45).

This allows to write the functional

F (ε0, T ) = (1− ploss)n
|γ/π|
T 1/m , n = 10, m = 1, 2 , (5.46)

which takes its maximum value if all three requirements are fulfilled. To
weight the three conditions, the exponents n and m are used. Adiabaticity is
the most difficult to achieve, and is weighted most strongly by setting n = 10.
For the gate duration, m = 2 has proved the most effective choice, although
m = 1 can be used to put more emphasis on a shorter gate duration.

The results of the simplex optimization are shown in Table 5.4. The
obtained gates are comparable to those obtained from systematic variation
in Fig. 5.4 and Table 5.3. Nearly all of the gates obtained by the simplex
optimization are now exact perfect entanglers.

For ωc = 6.00 GHz and ωd = ωc − 40 MHz, the optimization yielded
considerable improvement of the quality of the gate, compared to point 1
in Table 5.3. The gate duration is slightly shorter, while population loss
has decreased and entanglement has increased. For ωc = 8.11 GHz the
results are less positive; for ωd = ωc + 40 MHz, there is in fact a larger loss
of population than for point 3 in Table 5.3 (although the gate is now a
perfect entangler). This illustrates a shortcoming of the simplex algorithm,
which is sensitive to local traps. A slight change in parameters can cause
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δ T ε0 pop. loss 〈i, j〉max 〈n〉max nq nc[MHz] [ns] [MHz]
ωd < ωc = 6.00 GHz < ω1, ω2

-20 423 19 1.32× 10−1 2.34 21.75 12 50
-30 214 44 4.53× 10−3 1.15 4.81 9 40
-40 165 121 7.50× 10−3 1.36 7.99 10 40
-40* 146 127 1.09× 10−2 1.40 8.21 10 60
-50 311 144 5.47× 10−3 1.15 5.20 5 40

ωd > ωc = 8.11 GHz > ω1, ω2

20 291 67 2.30× 10−2 1.01 9.92 5 40
30 308 174 9.69× 10−3 1.02 18.24 5 50
40 220 372 1.10× 10−2 1.05 36.31 6 70
40* 125 471 5.94× 10−2 1.10 64.82 6 100
50 168 670 1.27× 10−2 1.09 65.64 6 110

Table 5.4: Simplex optimization of pulse time T and peak pulse amplitude ε0 for
the realization of a holonomic phasegate, for different pulse-cavity detunings
δ ≡ ωd − ωc and for two different cavity frequencies (left and right of the qubits,
cf. the two panels in Fig. 5.4). All parameters are listed in Table 5.2. The figure of
merit for the optimization is Eq. (5.46) with n = 10 and m = 2. We list the loss of
population from the logical subspace at final time T , the peak expectation values
〈i, j〉max, 〈n〉max of the qubit and cavity excitation, and the number nq, nc of
qubit and cavity levels that must be included for numerical convergence. In the
optimizations labeled by an asterisk, the figure of merit is taken with m = 1,
putting more emphasis on short gate durations.

a sudden non-adiabatic loss of population, producing a local minimum for
the optimization functional.

The results for varying values of δ = ωd − ωc confirm that when placing
the drive frequency closer to the cavity, lower pulse amplitudes produce
higher entanglement, but also, it is easier to lose population from the
logical subspace. For δ = −20 MHz, the gate fails completely: there is
large excitation of the qubit, 13% loss of population, and the concurrence
only reaches 0.84. This explains the somewhat counter-intuitive long gate
durations for both small and large values of δ. For small values, the loss of
adiabaticity can be countered by making the pulse longer, and thus change
more slowly. For large values, it is more difficult to obtain entanglement, so
that the pulse needs to be active for a longer duration before a concurrence
of 1.0 is reached. For δ = −50 MHz , 1− C = 8× 10−4. The best result is
obtained for δ = −40 MHz (shortest gate duration) or δ = −30 MHz (least
loss of population). For ωc = 8.11 GHz, moving the drive frequency closer
to the cavity is less detrimental; a perfect entangler is still achieved, albeit
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cavity frequency ωc 8.3 GHz
left qubit frequency ω1 6.5 GHz
right qubit frequency ω2 6.6 GHz
qubit anharmonicity α1, α2 -300 MHz
qubit-cavity coupling g1, g2 100 MHz

Table 5.5: Parameters for the transmon Hamiltonian Eq. (5.18) [236]

at a relatively high loss of population.
Shorter gates can be obtained by putting more emphasis on the minimiza-

tion of T , as was done for the two optimizations labeled with an asterisk.
However, this is at the cost of larger pulse amplitudes and increased loss of
population. Also for ωc = 8.11 GHz and δ = 40 GHz, the gate falls short of
being an exact perfect entangler, 1− C = 1× 10−5.

Lastly, the results in Table 5.4 confirm the observations of Fig. 5.4 and
Table 5.3, that choosing ωc > ω1, ω2 requires far stronger pulses, causing
very large cavity excitation. On the other hand, far less qubit levels need to
be taken into account.

5.7 Optimization of Transmon Quantum Gates with
Krotov’s Method

5.7.1 Optimization for CPHASE and CNOT
In order to explore the potential for more advanced optimal control of
two-qubit quantum gates for two transmons with a shared transmission
line, we use Krotov’s method as presented in chapter 3 to optimize the full
system Hamiltonian in Eq. (5.18) for the parameters given in Table 5.5. The
qubit parameters are assumed fixed, and the control is entirely through the
microwave field on the transmission line resonator. This distinguishes the ap-
proach from recent applications of similar control techniques to flux-tunable
qubits where the control parameter was the qubit-cavity detuning [237].

The optimization functional to be minimized is

J = 1− 1
16

∣∣∣∣∣∣
∑
i=1,4

〈
φk
∣∣∣ Ô†Û(T, 0; ε)

∣∣∣φk〉
∣∣∣∣∣∣
2

+ λa
S(t)

∫ T

0
(∆ε(t))2 dt , (5.47)

where {|φk〉} are the states {|000〉, |010〉, |100〉, |110〉} that span the logical
two-qubit subspace. The three quantum numbers indicate the excitation of
the first qubit, second qubit, and the cavity. Û(T, 0; ε) is the time evolution
operator for the propagation under the pulse ε(t), Ô is the target quantum
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gate. We optimize both for Ô = CPHASE and Ô = CNOT. The shape
function S(t) ensures a smooth switch-on and switch-off, λa is an arbitrary
scaling parameter. Starting from a guess pulse driving at the frequency of
the second qubit and small amplitude, Krotov’s method iteratively updates
the pulse according to

∆ε(t) = S(t)
λa

Im

[ 4∑
k=1

〈
χ

(i)
k (t)

∣∣∣∣∣
(

â + â†
)∣∣∣∣∣φ(i+1)

k (t)
〉]

, (5.48)

cf. Eq. (3.62), in order to minimize Eq. (5.47). The states {|φk〉} are forward
propagated with the updated pulse ε(i+1)(t), while the states {|χk〉} are
backward-propagated with the pulse ε(i)(t) of the current iteration, with
the boundary condition given by Eq. (3.65).

The results of the optimization for a CPHASE gate with pulse durations
between 100 ns and 1000 ns are shown in Fig. 5.6. The gate error 1− Favg
with Favg according to Eq. (2.88) is shown in blue in panel (d). The gate
error is limited to values > 1× 10−3, i.e., slightly above the quantum error
correction limit. For gate durations ≥ 200 ns, the gate error is entirely
due to loss of population from the logical subspace at time T , evaluated
according to Eq. (5.45). It is shown as the black dashed line in panel (d) of
Fig. 5.6. For T = 100 ns, the gate error is not simply due to the inability to
bring return the population to the logical subspace: for short gate durations,
there is not sufficient time to exploit the cavity-mediated qubit interaction
to generate the necessary entanglement for the desired gate. Panels (b)
and (c) show the peak expectation value of the qubit and cavity population
during the propagation of any of the logical basis states. For the qubit, it
shows that population is mostly within the first three levels of the transmon.
The system would not accurately be described by truncating it to two
levels, however. In fact, the number of levels that must be included in the
simulation for full convergence is a multiple of the mean excitation number.
The cavity is strongly driven to large excitations, which is the cause for
the limited gate fidelity. The gate error in panel (d) and the peak cavity
excitation in panel (b) are strongly correlated. In cases where the cavity
population reaches large values during the implementation of the gate, it
becomes extremely hard to bring the cavity to the ground state at final
time T . This results in the loss of population from the logical subspace,
and limits the gate fidelity. The large cavity population also makes the gate
sensitive to spontaneous decay of the cavity levels. The yellow and red curve
in panel (d) show the gate error if the cavity decays weakly, with a lifetime
of τ = 100 µs, and more strongly, with a lifetime of τ = 25 µs, exploring the
realistic range for current transmission line resonators. In both cases, the
gate error increases to values of 1× 10−2 or worse.

The system of two coupled transmons can implement not only a CPHASE
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Figure 5.6: Results for the unconstrained optimization of a CPHASE gate for
different gate durations. The panels show the peak amplitude of the optimized
pulse (a), the peak expectation value of the qubit number operator (b) and the
cavity number operator (c). Panel (d) shows the gate error without dissipation,
and with spontaneous decay of the cavity for a lifetime of τ = 100 µs and
τ = 25 µs. For the non-dissipative case, the loss of population from the logical
subspace at final time T is shown.
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Figure 5.7: Results for the unconstrained optimization of a CNOT gate for
different gate durations, cf. Fig. 5.6.
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Figure 5.8: Spectra of select pulses resulting from the optimization for
CPHASE (top) and CNOT (bottom), for a gate duration of T = 200 ns (left) and
T = 1000 ns (right), cf. Fig 5.6 and Fig. 5.7. The bare qubit and cavity frequencies
are indicated by the solid black vertical lines, and the qubit transitions |1〉 → |2〉
by the dashed lines.

gate, but but a wide range of other entangling quantum gates. In Fig. 5.7,
the results for an optimization towards a CNOT gate for a few gate durations
is shown. The pulse amplitudes in panel (a) are similar to those obtained in
the CPHASE optimization. Also, the reachable gate error is on the order of
10−3. The qubit excitation again shows significant population of the third
level of the anharmonic transmon ladder. For short gate durations, the
peak cavity population is significantly higher than for CPHASE, resulting
in considerably worse fidelities at 200 ns and 300 ns. A quantum speed limit,
where the gate error is not determined just by the loss of population from
the logical subspace alone is again found for T < 200 ns.

While the optimization yields complicated dynamics that make a detailed
understanding of the gate mechanisms far from trivial, it is instructive to
consider the spectra of the optimized pulses. For the optimized pulses
of CPHASE and CNOT, for each gate duration of T = 200 ns and T =
1000 ns, the spectra are shown in Fig. 5.8. Intuitively, for T = 200 ns,
the implementation of the gate is much harder than for T = 1000 ns and
requires greater pulse amplitude. Consequently, there are more spectral
components and broader peaks in the spectra for the short gate durations.
For CPHASE at T = 200 ns, the spectrum is dominated by the frequencies
corresponding to the anharmonic transition |1〉 → |2〉 for the both left and
right qubit. This matches the peak qubit excitation of 〈i〉 = 2 in panel (b)
of Fig. 5.6. The two qubit frequencies and the cavity frequencies are also
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present, together with high-frequency sideband transitions. For example,
the first two of these transitions at 10.0 GHz and 10.1 GHz correspond to
the transitions

|1〉q ⊗ |0〉c ←→ |0〉q ⊗ |2〉c , q = 1, 2 (5.49)

that transfers two cavity excitations into one qubit excitation of the left or
right qubit, or vice versa. For T = 1000 ns, the spectrum for the CPHASE
gate is relatively close to the spectrum of the original guess pulse, driving
mainly on the frequency of the second qubit. However, the cavity frequencies
and the sideband transition of Eq. (5.49) are also present. The absence of
the frequency driving the |1〉 ↔ |2〉 transition of the qubits corresponds to
the peak qubit population of 〈i〉 = 1 for T = 1000 ns in panel (c) of Fig. 5.6.
The optimized pulses for a CNOT gate are roughly similar to those for
CPHASE. However, the combination of driving the right qubit frequency
and the left anharmonic transition appear relevant, as they are present
both for short and long gate duration. Counterintuitively, the significant
drive of the cavity frequency for CNOT at T = 1000 ns does not correspond
to a large peak cavity population in panel (c) of Fig. 5.7. This illustrates
that the dynamics of the optimized pulses are very non-trivial and that the
high-frequency sideband frequencies play a significant role. For example, it
is conceivable that the transition in Eq. (5.49) acts in conjunction with the
cavity drive to manipulate the qubit state. Lastly, the spectra also illustrate
the Stark shift of the cavity level, respectively the Lamb shifts on the qubit
levels that is induced by the qubit-cavity interaction: the qubit frequencies
are shifted very slightly to the left of the bare frequency, whereas the cavity
frequency is very slightly shifted right.

5.7.2 Optimization for a Holonomic Phasegate
Given the limited success of an unconstrained direct optimization for a
CPHASE or a CNOT gate, we may attempt to set up the optimization
for a specific gate mechanism. Therefore, we return to the holonomic
phasegate and attempt to use Krotov’s method to improve upon the results
of section 5.6. The first term in Eq. (5.47) must be replaced with a final
time functional that reflects the objectives of the holonomic mechanism.
While the functional in Eq. (5.46) used in the simplex optimization is not
suitable for Krotov’s method, since it would be extremely hard to evaluate
the boundary condition for the backward-propagated states, Eq. (3.56), it
is relatively straightforward to derive a more suitable functional. The two
conditions that we consider are:

1. The gate should be diagonal; every one of the logical eigenstates
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Table 5.2. The success is evaluated in terms of the loss of population from the
logical subspace at final time T , and the concurrence C of the obtained gate Û.

should be mapped onto itself, up to a Berry phase.

2. The Berry phases should yield maximum entanglement, γ = π, ac-
cording to Eq. (2.30).

The two conditions enter as two terms in the final time functional,

JT = Jss + wγJγ , (5.50)

with a factor wγ to weight their relative importance. With

τ00 =
〈

00
∣∣∣ Û ∣∣∣ 00

〉
, (5.51)

and equivalently for |01〉, |10〉, and |11〉, the first term takes the form

Jss = 4− |τ00|2 − |τ01|2 − |τ10|2 − |τ11|2 , (5.52)

i.e. four simultaneous state-to-state transitions [138]. As shown in ap-
pendix H, the second term can be written as

Jγ = 2 + τ00τ
∗
01τ
∗
10τ11 + τ∗00τ01τ10τ

∗
11 . (5.53)

The boundary condition for the backward propagation may also be found
in appendix H.

The results of an optimization for the two parameter sets corresponding
to the solid orange curve in the top panel and the dashed red curve in
the bottom panel of Fig. 5.4, used also in the simplex optimization in
section 5.6.2, is shown in Fig. 5.9. The gate durations are varied between
40 ns and 150 ns, the approximate shortest gate duration obtained in the
simplex optimization. A fully entangling gate can be achieved for T > 90 ns
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(ωc = 6.0 GHz), respectively T > 120 ns (ωc = 8.1 GHz). However, there is
considerable loss of population from the logical subspace, comparable to
the results obtained by simplex optimization, cf. 5.4. As observed both in
section 5.6.2 and section 5.7.1, it is the inability to return the state entirely
to the logical subspace that fundamentally limits the optimization success
to values above the error correction threshold.

The population dynamics for T = 120 ns and ωc = 6.0, cf. the respective
point on the solid red line in Fig. 5.9 is shown in Fig. 5.10 and should
be compared to Fig. 5.5. The dynamics are considerably non-adiabatic,
showing direct driving of both the qubits and the cavity. However, the highly
symmetric shape of the pulse, the population dynamics and the excitation
of both qubits and cavity correspond to what one would hope to achieve by
applying optimal control to the holonomic gate. Since adiabaticity cannot be
achieved on the given time-scale, optimal control corrects the non-adiabatic
effects by ensuring that for a symmetric pulse, any jumps over an avoided
crossing that happen during the switch-on also happen during the switch-off.
However, the optimized pulse is only partially successful in this endeavor,
as evidenced by the non-zero excitation of the left qubit at final time T , cf.
panel (c).

The spectrum of the optimized pulse in panel (d) of Fig. 5.10 is shown
in the top panel of Fig. 5.11, together with the spectrum of the optimized
pulse for ωc = 8.1 GHz, also at T = 120 ns (bottom panel). In both cases,
the optimized pulse does not only contain the central frequency for the
off-resonant drive at ωd, but also frequencies that resonantly drive the cavity
and both qubits. In the top panel, these are shifted significantly from their
bare values, whereas for the bottom panel, the shifts are not discernible.
This corresponds to the results of Fig. 5.4. The mirrored frequencies are
due to the pulse being complex-valued in the RWA and correspond to the
time-dependence of the complex phase.

For all the optimizations presented in this section, the CPHASE, CNOT,
and the holonomic gate, the fidelities of the optimized gates are limited
by loss of population from the logical subspace. To achieve high fidelity
gates, more advanced approaches will be required. First, it appears that
the Krotov-gradient is not sufficiently sensitive to the small but still sig-
nificant loss of population. Switching the optimization to a method that
uses second order information as soon as convergence stagnates, such as
the GRAPE/LBFGS method presented in chapter 3 provides a possible
solution. More fundamentally, however, it might be more promising to avoid
the problematic and unwanted excitation of high qubit and cavity levels
altogether, by placing constraints on the optimization. These could take the
form of state-dependent constraints [156] to avoid high excitations, or using
spectral constraints [158, 159] to enforce simpler spectra in the optimized
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Figure 5.11: Spectra of pulses for T = 120 ns. The top panel corresponds to the
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The central peaks extend to a value ≈ 40.
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pulses or to remove e.g. cavity driving from the optimization of the CPHASE
and CNOT, and resonant driving from the optimization of the qubit. A
further option is to reduce the complexity of the model by considering an
effective model of the cavity-mediated qubit-qubit interaction, as discussed
in section 5.4. This is the approach we take in chapters 6 and 7. However,
we have found that an unconstrained optimization in the effective model will
generally cause the correspondence between the full and the effective model
to break down. Again, this issue might be addressed by placing constraints
on the optimization.

Limiting the excitation of the qubits and the cavity will also improve the
robustness of the implemented gates with respect to decoherence, cf. Figs. 5.6
and 5.7, as the lower levels are least affected by spontaneous decay and
dephasing. Going further, once the optimization of the transmon qubits has
been brought to yield fidelities below the quantum error correction limit,
the techniques of chapter 4 and the following chapters 6 and 7 may be used
to address the ultimate goal of designing quantum gates for the transmon
that are as robust as possible against the effects of decoherence.





6
Optimization for a Perfect Entangler

The implementation of a universal quantum computer requires at least one
entangling two-qubit gate [86, 87], together with arbitrary single-qubit gates.
However, as discussed in chapter 2, this need not be one of the “standard”
gates, such as CNOT. The construct of the Weyl chamber, see section 2.4
in chapter 2, shows that for any two-qubit gate, there is an infinite number
of equivalent quantum gates that differ only by additional local operations.
For example the CPHASE gate is equivalent in this sense to CNOT, see
Eq. (2.45).

In an optimization context, this has far-reaching consequences. Not every
Hamiltonian allows for the implementation of arbitrary two-qubit gates. For
example, the trapped Rydberg atoms discussed in chapter 4 can only imple-
ment diagonal gates, with a fixed global phase. The optimization target must
be chosen to properly reflect this. Reachability is not the only consideration,
however. Equally important is the question whether one two-qubit gate may
be “easier” to implement than some other (possibly equivalent) two-qubit
gate, in terms of the minimum required pulse duration, the required pulse
energy, or the difficulty of keeping the population in the logical subspace
in a multi-level system. For example, a Hamiltonian containing among
other terms an exchange interaction (σ̂+σ̂− + σ̂−σ̂+) will likely find it easier
to implement the

√
iSWAP gate than the locally equivalent M-gate. The

latter is generated by a term (3σ̂xσ̂x + σ̂yσ̂y), cf. Table D.1, that would
be part of the Lie algebra only indirectly. Likewise, the implementation of
iSWAP would likely require more time than

√
iSWAP, even though both

gates generate the same amount of entanglement.

119
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Using an optimization functional such as Eq. (3.39) or Eq. (3.40) that
targets a specific quantum gate is therefore unnecessarily restrictive. A far
better approach is to formulate a more general optimization functional, and
allow optimal control to select the specific gate that most effectively fits the
objective. The geometric theory of local invariants has been combined with
optimal control [238, 193], using a functional that minimizes the Cartesian
distance to a target point in the Weyl chamber (c1, c2, c3), see Eq. (2.46),
respectively a set of local invariants (g1, g2, g3), see Eq. (2.47).

This chapter, adapted from [239, 240], addresses the realization of perfect
entanglers, i.e., quantum gates that are capable of transforming some
separable states into maximally entangled states. This recognizes the
fundamental role of entanglement, as the resource that two-qubit gates
contribute to the gate model of universal quantum computing. Moreover,
since nearly 85% of gates in SU(4) are perfect entanglers [241, 92], optimizing
for an arbitrary perfect entangler gives a much broader target.

Extending the idea of optimization in the Weyl chamber, a functional
for an arbitrary perfect entangler has been formulated [239]. As shown in
Fig. 2.3, the perfect entanglers form a polyhedron bounded by the planes

c1 + c2 = π

2 , c1 − c2 = π

2 , c2 + c3 = π

2 . (6.1)

Thus, an optimization could simply minimize the distance to the nearest
wall of that polyhedron.

Both the underlying local-invariants functional and the newly developed
perfect entanglers functionals are reviewed in section 6.1. An optimization
in the Weyl chamber, either towards a specific point or towards a general
perfect entangler is most useful for quantum computing implementations
that can generate a large number of gates, such as the superconducting
circuits presented in chapter 5. In order to obtain some insight in the
structure of the dynamics generated by a typical Hamiltonian, section 6.2
shows the controllability for an effective description of two qubits, truncated
to two levels. Section 6.3 then applies the method to a specific example of
transmon qubits, illustrating the power of an optimization towards a perfect
entangler in comparison to the optimization towards a local equivalence
class.

While the perfect entanglers functional is tested on a Hilbert space
description, the ultimate motivation for using a more general functional is
to counter decoherence. First, dissipation might affect the processes imple-
menting different gates differently. In such a situation, a direct optimization
might result in very different fidelities. Optimizing for a general perfect
entanlger, on the other hand, would automatically yield the gate that is
implementable with highest fidelity under dissipation. In a situation where
dissipation cannot be circumvented, the only option is to perform the gate
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on a faster time scale than that of the decoherence. The equation of the
quantum speed limit then becomes crucial. Since the speed limit may differ
for various gates, the perfect entanglers functional allows to identify the
optimal gate in such cases. Thus, even without going to the formalism of
Liouville space, the possibility to implement fast gates provides an answer
to the problem of implementing gates in an open quantum system. The
message of this chapter therefore connects to that of chapter 4, in that the
key to finding robust quantum gates with optimal control is to encode all rel-
evant requirements, and only the relevant requirements in the optimization
functional.

6.1 The Perfect Entanglers Functional

6.1.1 Formulation in c-space

The Cartan decomposition

Û = k̂1ÂU k̂2 , Âu = exp

 i
2

3∑
j=1

cj σ̂j σ̂j

 , (6.2)

cf. Eq. (2.46), allows to determine the “true” two-qubit part ÂU for an
arbitrary two-qubit gate Û. The “local” components k̂1, k̂2 can be written
in terms of single-qubit gates

k̂i = Û(1)
i ⊗ 1 + 1⊗ Û(2)

i , Û(1,2)
i ∈ SU(2) , (6.3)

whereas ÂU allows for no such decomposition. The entanglement power of
Û is provided only by the non-local ÂU .

Therefore, the optimization for a general perfect entangler starts from the
prerequisite of eliminating all non-local operations from the figure of merit.
Replacing the target gate Ô and achieved gate Û in the functional (3.40) by
only their non-local components ÂO, ÂU yields an optimization functional
εlec = 1− Flec with

Flec = 1
4Re

(
tr
[
Â†OÂU

])
. (6.4)

The functional εlec takes its minimum value of zero if and only if Ô and Û
have the same non-local component, as determined by the Weyl chamber
coordinates (c1, c2, c3). Rewriting Eq. (6.4) explicitly in these coordinates
yields [239]

Flec = cos ∆c1
2 cos ∆c2

2 cos ∆c3
2 , ∆ci ≡ ci,O − ci,U . (6.5)
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Thus, the optimization can be interpreted as minimizing the geometric
distance (∆c1,∆c2,∆c3) to a target point in the Weyl chamber.

This may now be extended further to obtain a functional that optimizes
for a general perfect entangler, by minimizing the distance not to a specific
point in the Weyl chamber, but to the polyhedron of perfect entanglers. For
any gate Û, we identify the closest of the planes bounding the perfect en-
tanglers, Eq. (6.1). Then, the distance of (c1,U , c2,U , c3,U ) and its projection
onto that plane is minimized, resulting in [239]

FPE(Û) =


cos2 cU,1+cU,2−π2

4 c1 + c2 ≤ π
2

cos2 cU,2+cU,3−π2
4 c2 + c3 ≥ π

2
cos2 cU,1−cU,2−π2

4 c1 − c2 ≥ π
2

1 otherwise.

(6.6)

Both Flec and FPE take values in [0, 1] and can thus be interpreted as
fidelities.

Generally, the logical two-qubit subspace is embedded in a larger Hilbert
space, such that while the dynamics in the total Hilbert space are unitary,
the dynamics in the subspace may not be. In this case, a closest unitary
Û can be derived from the non-unitary (projected) gate Ũ: If Ũ has the
singular value decomposition

Ũ = V̂ Σ̂ Ŵ† , (6.7)

then the closest unitary is

Û = arg min
u

∥∥∥Ũ− u
∥∥∥ = V̂ Ŵ† . (6.8)

The distance between Û and Ũ is a measure of unitarity. The total local-
equivalence-class and perfect-entangler fidelities then become

Flec(Ũ) = Flec(Û)−
∥∥∥Ũ− Û

∥∥∥ , (6.9)

FPE(Ũ) = FPE(Û)−
∥∥∥Ũ− Û

∥∥∥ . (6.10)

The optimization goal is to find that Ũ = Û which minimizes 1 − Flec or
1− FPE.

6.1.2 Formulation in g-space
The formulation of the local equivalence class and perfect entanglers func-
tionals in terms of the Weyl chamber coordinates (c1, c2, c3), Eq. (6.9) and
Eq. (6.10), have the disadvantage that there is no way to evaluate them
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Figure 6.1: Value for the perfect-entanglers JPE as defined in Eq. (6.12) for
sampling points in the Weyl chamber. On the left, values for points in the regions
W0, W ∗

0 , and W1 (outside of the perfect entanglers polyhedron). The values are in
the range −2 ≤ JPE ≤ 2. On the right, values −0.07 . JPE . 0.07 inside the
perfect-entanglers polyhedron. The functional takes slightly positive values in the
center top region, and slightly negative values near the outer bottom regions,
behind both the M point and the Q point (not visible).

analytically for a given gate Û. This is because calculation of the Weyl
coordinates themselves relies on numerical diagonalization of Û, as discussed
in chapter 2. Therefore, use of the functionals Flec and FPE is restricted
to optimization methods that are not gradient-based, such as the CRAB
algorithm presented in section 3.3.2 of chapter 3. An application of the
functional using this algorithm can be found in Ref. [240].

For the other optimal control approaches discussed in chapter 3, the
gradient of the optimization functional needs to be evaluated. We must
therefore use an equivalent functional, based not on the Weyl space coor-
dinates (c1, c2, c3), but on the local invariants (g1, g2, g3), see Eq. (2.48),
which depend analytically on Û and therefore can be differentiated either
with respect to the field (GRAPE) or with respect to the states (Krotov).

For the local invariants, an appropriate functional can be postulated
as [238, 193]

JLI(Û) = (∆g1)2 + (∆g2)2 + (∆g3)2 , (6.11)

where ∆gi is the Euclidean distance between local invariant gi of the obtained
unitary Û and the optimal gate Ô. Eq. (6.11) takes its minimum value zero
if and only if the gates Û and Ô are identical up to local transformations.
This makes it slightly more general than Eq. (6.5), as there are some gates
that are locally equivalent but have different Weyl-chamber coordinates,
such as the points Q and M in Fig. 2.3.

In order to derive a functional based on the local invariants (g1, g2, g3)
for an arbitrary perfect entangler, Eq. (2.47) is used to rewrite Eq. (6.6),
resulting in [239]

JPE(Û) = g3

√
g2

1 + g2
2 − g1 . (6.12)
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Eq. (6.12) takes the value zero at the boundary to the perfect entanglers.
The value of JPE for gates throughout the Weyl chamber is shown in Fig. 6.1.
It is important to note that JPE can also take negative values. Typically, an
optimization will start from a guess pulse that generates little entanglement,
locally equivalent to a gate close to the identity. In the Weyl chamber,
these are defined as the regions W0 (delimited by O, L, Q, and P ) and
W ∗0 (delimited by A1, L, M , and N). In these regions, the functional goes
smoothly from its maximum value of 2 to 0 on the boundary of the perfect
entanglers. The sign of the functional is reversed if the optimization were
to start from near the SWAP gate at A3. This region is denoted as W2,
delimited by A3, A2, P,N . Typically, this is not a problem. Thinking of
entanglement as a resource that is generated by an interaction acting over
a certain period of time, continuing to apply the same interaction after the
entanglement has reached its maximum value of 1 will now disentangle the
entangled states. For example, a

σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z

interaction will generate gates along the O − P −A3 line (see appendix D),
building up entanglement as it goes towards the

√
SWAP perfect entangler

and then removing it again until the non-entangling SWAP gate is reached.
Thus, guess pulses would be expected to start in W2 only for extremely
simple systems; when this occurs, the sign of the functional must be reversed.

Inside the polyhedron of perfect entanglers, JPE can also take non-
zero values; it is zero on the planes L–N–A2 and L–P–A2, as well as on
all boundaries of the polyhedron. Thus, if an optimization is allowed to
continue after passing through the perfect-entanglers boundary, it will be
pushed towards the center of the sub-polyhedron delimited by the point L,
M , A2, and N on the right; or L, Q, A2 and P on the left.

Like before, we must take into account non-unitarity due to projection
onto the logical subspace. Just as for the value of the functional, Flec and
FPE, the expression

∥∥∥Ũ− Û
∥∥∥ used to evaluate unitarity in section 6.1.1

cannot easily be differentiated. As an alternative, we minimize the loss of
population from the logical subspace,

ploss = 1
4 tr

[
Ũ†Ũ

]
(6.13)

as an alternative measure of unitarity.

In total, the optimization functional for the local invariants and perfect
entanglers then reads
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JLI(Ũ) = wJLI(Û) + (w − 1)
(

1− 1
4 tr

[
Ũ†Ũ

])
, (6.14)

JPE(Ũ) = wJPE(Û) + (w − 1)
(

1− 1
4 tr

[
Ũ†Ũ

])
. (6.15)

In order to weight the relative importance of the Weyl-chamber optimization
and the unitarity, the factor w ∈ [0, 1] is used. This factor can be adaptively
changed during the optimization in order to improve convergence.

6.2 Controllability of Superconducting Qubits
Optimization towards an arbitrary perfect entangler is most meaningful
if the system dynamics allows the polyhedron of perfect entanglers to be
approached from more than one direction or, more generally, for optimization
paths in the Weyl chamber that explore more than one dimension. We
therefore investigate the corresponding requirements on a generic two-qubit
Hamiltonian,

Ĥ[u1(t), u2(t)] =
∑
α=1,2

ωα
2 σ̂(α)

z + u1(t)
(
σ̂(1)
x + λσ̂(2)

x

)
+

+ u2(t)
(
σ̂(1)
x σ̂(2)

x + σ̂(1)
y σ̂(2)

y

)
.

(6.16)

Here, σ̂(α)
i is the i’th Pauli operator acting on the α’th qubit of transition

frequency ωα, u1(t) the single-qubit control field, where λ describes how
strongly u1(t) couples to the second qubit relative to the first one, and u2(t)
is the two-qubit interaction control field.

The Hamiltonian in Eq. (6.16) is of the form typical for an effective
description of superconducting qubits, truncated to two levels. In principle,
truncation of the Hamiltonian can have significant influence on controllability.
For example, a two-level system is fully controllable, whereas and infinite
harmonic oscillator is not. For superconducting qubits, however, we do not
expect controllability to be enhanced by truncation. Therefore, an analysis
still provides valuable insight into how the Hamiltonian acts in the Weyl
chamber.

We analyze the solutions to the differential equation

∂

∂t
Û(t) = −iĤ [u(t)] Û (t) , Û(0) = 1 , (6.17)

for the unitary transformations Û generated by the Hamiltonian (6.16). The
reachable set of unitary transformations for a Hamiltonian is given in terms
of the corresponding dynamical Lie algebra, see section 2.3.3 in chapter 2.
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Figure 6.2: Sampling of reachable points in the Weyl chamber, obtained by
solving Eq. (6.17) for the Hamiltonian (6.16) with λ = 1. In panel (a), u1(t) is a
random pulse ∈ [0, 1], u2(t) ≡ 10−3, and ω1 = 1.0 6= ω2 = 1.1. In panel (b), in
addition ω1 = ω2 = 1.0. In panel (c), u1(t) and u2(t) are both independently
random ∈ [0, 1], and ω1 = ω2 = 0. In panel (d), in addition u1(t) ≡ u2(t). The red
line in panel (d) is obtained for u1(t) ≡ 0 and u2(t) random ∈ [0, 1] (ω1 = ω2 = 0).

It can be generated by taking the terms in (6.16) as a basis (neglecting
orthonormalization for simplicity),

σ̂(1)
z , σ̂(2)

z , σ̂(1)
x + λσ̂(2)

x , σ̂(1)
x σ̂(2)

x + σ̂(1)
y σ̂(2)

y ,

and constructing the repeated Lie brackets of these operators. This quickly
yields all 15 canonical basis operators of SU(4), consisting of the single-
qubit operators σ̂(1)

x , σ̂(2)
x , σ̂(1)

y , σ̂(2)
y , σ̂(1)

z , and σ̂(2)
z , as well as the entangling

operators σ̂(1)
x σ̂(2)

y , σ̂(1)
y σ̂(2)

x , σ̂(1)
y σ̂(2)

z , σ̂(1)
z σ̂(2)

y , σ̂(1)
x σ̂(2)

z , σ̂(1)
z σ̂(2)

x , σ̂(1)
x σ̂(2)

x ,
σ̂(1)
y σ̂(2)

y , and σ̂(1)
z σ̂(2)

z . Hence the system is completely controllable, and any
point in the Weyl chamber can be reached.

The complete controllability can be verified numerically, by solving
Eq. (6.17) for a random sequence of pulse values. The gates obtained
within 1000 steps are shown in panel (a) of Fig. 6.2, and demonstrate full
controllability, since there are points in all regions of the Weyl chamber.
Continuing the procedure to infinity would eventually fill the entire chamber.
Neither setting u2(t) constant nor choosing λ = 0 places any restrictions on
the controllability – indeed it is sufficient if either the single qubit terms
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or the interaction term is controllable. While the controllability in this
example was analyzed for arbitrary values of the parameters, the form of
the Hamiltonian and the ratio between ω1,2 and u2 fits the description of
superconducting transmon qubits, with qubit energies in the GHz range
and static qubit-qubit-coupling in the MHz range.

Introducing symmetries in the Hamiltonian (6.16) reduces the control-
lability. First, we consider a situation in which the two qubits operate at
the same frequency ω1 = ω2. In this case, the dynamic Lie algebra consists
of only 9 instead of 15 operators. Consequently, not every two-qubit gate
can be implemented. However, the nine operators include σ̂(1)

x σ̂(2)
x , σ̂(1)

y σ̂(2)
y ,

σ̂(1)
z σ̂(2)

z , which are sufficient to reach every point in the Weyl chamber, cf.
Eq. (2.46). This is illustrated in panel (b) of Fig. 6.2. Despite the reduced
controllability, the Weyl chamber is more evenly filled after the same 1000
propagation steps as in panel (a). This counterintuitive finding is due to
the lower dimension of the random walk, with no resources being “wasted”
on the missing six single-qubit directions.

The set of gates that can be implemented with Hamiltonian (6.16) is more
severely restricted if both qubits are completely degenerate, ω1 = ω2 = 0.
This is typical for superconducting charge qubits operated at the “charge
degeneracy point”. Without any drift term, the Lie algebra consists of only
four generators, σ̂(1)

z σ̂(2)
y + σ̂(1)

y σ̂(2)
z and σ̂(1)

y σ̂(2)
y − σ̂(1)

z σ̂(2)
z in addition to

the two original terms. The implications for controllability in the Weyl
chamber are not immediately obvious since three generators can be sufficient
to obtain full Weyl chamber controllability. The easiest approach is to
perform a numerical analysis, the results of which are shown in panel (c)
of Fig. 6.2. Two independent randomized pulses u1(t) and u2(t) were used.
The reachable points lie on a plane, which due to the reflection symmetries
appears as two triangular branches, indicated by the shaded triangles, O–
(2π

3 ,
π
3 ,

π
3 )–A2 and A1–(π3 ,

π
3 ,

π
3 )–A2. Note that almost none of the common

two-qubit gates are included in this set.
If only a single pulse is available to drive both the single-qubit and

two-qubit terms, u1(t) ≡ u2(t), and the qubits are degenerate, ω1 = ω2 = 0,
there is a single generator for the dynamics. This situation is shown in panel
(d) of Fig. 6.2. Although there is only a single generator for the dynamics,
a two-dimensional subset of the Weyl chamber can be reached. However,
the subset is no longer the full plane as it is for two independent pulses,
panel (c). Without single-qubit control, the center of the plane is not longer
reachable. It is important to remember that while a single generator yields
points on a line in the Weyl chamber (not necessarily a straight one), it can
still fill an arbitrary subset of the Weyl chamber, due to reflections at the
boundaries. A similar example, restricted to the ground plane of the Weyl
chamber, has been analyzed in Ref. [91].
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left qubit frequency ω1 4.380 GHz
right qubit frequency ω2 4.614 GHz
left qubit anharmonicity α1 -210 MHz
right qubit anharmonicity α2 -215 MHz
effective qubit-qubit coupling Jeff -3.0 MHz
relative coupling strength λ 1.03

Table 6.1: Parameters for the transmon Hamiltonian Eq. (6.19)
.

Lastly, if there is no control over the individual qubits at all, u1(t) ≡ 0,
the only remaining generator is σ̂(1)

x σ̂(2)
x + σ̂(1)

y σ̂(2)
y . This corresponds to

the straight line O–A2 in the Weyl chamber, shown in red in panel (d) of
Fig. 6.2. The line is reflected back onto itself at the A2 point. Thus, in
this case only a truly one-dimensional subset of reachable gates in the Weyl
chamber can be realized.

For a Hamiltonian that allows for a one-dimensional search-space only,
optimal control calculations with a functional targeting all perfect entanglers
will not yield results better than direct gate optimization. In the above
example, the perfect entangler that can be generated with the shortest gate
duration is the

√
iSWAP at the point Q.

In contrast, for Hamiltonians allowing for two or three search direc-
tions in the Weyl chamber, especially panels (a) and (b) in Fig. 6.2, the
polyhedron of perfect entanglers may be approached from several different
angles. Optimization with a functional targeting all perfect entanglers is
then non-trivial. In such a search, the optimized solution will depend on
additional constraints in the functional and the initial guess field.

6.3 Optimization of Transmon Qubits

6.3.1 Model
Having verified that the Hamiltonian in Eq. (6.16) allows for full control-
lability, we now extend the discussion to a more realistic description of
two transmons, i.e., anharmonic multi-level systems whose interaction is
mediated by a cavity. This is described by a generalized Jaynes-Cummings
Hamiltonian, see chapter 5. The energy of each transmon qubit transi-
tion given by ω1, ω2 for the first (“left”) and second (“right”) transmon
respectively. Following a Duffing oscillator model, higher levels show an
anharmonicity of α1, respectively α2. Each qubit couples to the cavity with
coupling strength g1, g2. In the dispersive limit |ωi − ωr| � |gi|, i = 1, 2,
with ωr the cavity frequency, the cavity can be eliminated and an effec-
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tive two-transmon Hamiltonian is obtained. The coupling between each
transmon and the cavity turns into an effective qubit-qubit coupling

Jeff ≈ g1g2
(ω1 − ωr)

+ g1g2
(ω2 − ωr)

. (6.18)

In most current setups, Jeff � |ω2 − ω1|, and the two-transmon Hamiltonian
can be approximated as [222]

Ĥ2T ≈
∑
i=1,2

((
ωi + αi

2

)
b̂†i b̂i −

αi
2
(

b̂†i b̂i
)2)

+

+ Jeff
(

b̂†1b̂2 + b̂1b̂†2
)

+ Ω(t)
(

b̂1 + b̂†1 + λb̂2 + λb̂†2
)
,

(6.19)

cf. Eq. (5.30), where Ω(t) is the driving field in the rotating wave approxima-
tion, see Eq. (5.39). Typical parameters are given in Table 6.1. A two-level
truncation of this Hamiltonian corresponds to Eq. (6.16).

6.3.2 Krotov’s Method

The optimization is performed using Krotov’s method, section 3.3.4 of
chapter 3, for both the local invariants functional (6.14) and the perfect
entanglers functional (6.15). No dissipation is taken into account. The basis
states for the forward propagation are the Bell states

|φ1〉 = 1√
2

(|00〉 − i|11〉) , |φ2〉 = − 1√
2

(i|01〉 − |10〉) , (6.20)

|φ3〉 = − 1√
2

(i|01〉+ |10〉) , |φ4〉 = 1√
2

(|00〉+ i|11〉) , (6.21)

as required for the calculation of the local invariants, cf. Eq.(2.51). The
equations of motion are given by the standard Schrödinger equation, see
Eq. (3.54) and Eq. (3.55).

The boundary conditions for the backward propagation,∣∣∣χ(i)
k (T )

〉
= − ∂JT

∂ 〈φk|

∣∣∣∣
φ

(i)
k

(T )
, (6.22)

cf. Eq. (3.56), are straightforward to calculate, although tedious. For JLI,
they can be found in Ref.[238]. For JPE, they are listed in appendix G.

Both JLI and JPE are highly non-convex functionals. Therefore, they
require the second order contribution in the Krotov update equation. With
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Figure 6.3: Optimized gates in the Weyl chamber, for two transmon qubits,
optimized with Krotov’s method for the perfect-entangler (PE) functional in
Eq. (6.15). The point at which each optimization enters the PE polyhedron, or
the end point of the optimization if no PE can be obtained, is shown by a black
dot and labeled with the gate duration. The entire optimization paths for
T = 50ns and T = 400ns are shown in light blue and dark purple, respectively,
with the starting points labeled by 50∗ and 400∗.

the standard constraint (3.61), this update equation is

∆Ω(t) = S(t)
λa

Im

 N∑
k=1

〈
χ

(i)
k (t)

∣∣∣∣∣
(
∂Ĥ
∂Ω

∣∣∣∣∣φ(i+1)(t)
Ω(i+1)(t)

)∣∣∣∣∣φ(i+1)
k (t)

〉
+

+1
2σ(t)

〈
∆φk(t)

∣∣∣∣∣
(
∂Ĥ
∂Ω

∣∣∣∣∣φ(i+1)(t)
Ω(i+1)(t)

)∣∣∣∣∣φ(i+1)
k (t)

〉 ,
(6.23)

cf. Eq. (3.52), with σ(t) given by Eq. (3.57). The optimization is carried out
for different gate durations between 25 ns and 400 ns, using a sine-squared
pulse of 35 MHz peak amplitude as the guess pulse Ω(0)(t).

6.3.3 Optimization Results
Figure 6.3 shows the results of the optimization in the Weyl chamber. The
point at which each optimization enters the perfect entanglers polyhedron is
indicated by a black dot and labeled with the gate duration. For T < 50 ns,
no perfect entangler can be reached – defining heuristically the quantum
speed limit (QSL) for this transformation. In order to illustrate how the
optimization proceeds, the optimization paths for T = 50ns, i.e., the gate
at the QSL, and a high-fidelity gate (T = 400ns) are traced in light blue
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Figure 6.4: Comparison of optimization success for the PE functional compared
to the local invariants (LI) functional for several points in the Weyl chamber. The
optimization success using Krotov’s method is measured in c-space, although the
optimization functionals are defined in g-space (see text for details). For the
LI-optimization, the results are fully converged. For the PE-optimization, the
results are converged to a relative change below 10−2 (black solid curve) and 10−3

(gray dash-dash-dotted curve).

and dark purple, respectively. Both optimizations start in the W ∗0 region
(near the A1 point). The gate obtained with the guess pulse for T = 50ns
is significantly farther away from the surface of the polyhedron of PE than
that for the guess pulse with T = 400ns. Optimization for T = 400ns
therefore moves directly towards the W ∗0 surface of the PE polyhedron,
whereas the optimization for T = 50 ns enters the ground plane and emerges
in the W0 region, before finally reaching the W0 surface of the polyhedron
of perfect entanglers. The jump from W ∗0 to W0 is indicated by the light
blue arrow. We find the optimization to enter W0 from W ∗0 for durations
< 100 ns, whereas for longer gate duration the optimizations stay within W ∗0
entirely. The different optimization paths are a result of the competition
between the two objectives – to reach a perfect entangler, and to implement
a gate that is unitary in the logical subspace (the points shown in Fig. 6.3
are the Weyl chamber coordinates of the unitary U closest to the actual
time evolution Ũ). The latter objective is more difficult to realize for shorter
gate durations, resulting in a more indirect approach to the polyhedron of
perfect entanglers than one might expect when considering that objective
alone.

It is instructive to compare the optimization success of the perfect
entangler functional, Eq. (6.15) with the optimization under the local-
invariants functional, Eq. (6.14) for a few select points of the Weyl chamber.
This is shown in Fig. 6.4. While the optimization was driven by the g-
space formulation of the functionals, the fidelities Flec and FPE define a
more intuitive figure of merit for the analysis. As defined in Eq. (6.9) and
Eq. (6.10), the fidelity is reduced by non-unitarity.
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The results of Fig. 6.4 show how for different gate durations, different
gates are easiest to reach. In agreement with the results of Fig. 6.3, for
durations < 50 ns, the jump in the optimization error indicates a speed
limit. For short gate durations, 50 ns ≤ T ≤ 100 ns, optimization towards
the point Q in the Weyl chamber is most successful. This matches the
optimized gates for T ≤ 100ns in Fig. 6.3 being near the Q point. Also
correspondingly, the longer gate durations end near the N point. The failure
to reach the point Q for longer durations is due to the symmetry structure
of the Weyl chamber. Namely, for the ground plane of the chamber, there is
a mirror axis defined by the line through L and A2, where mirrored points
are in the same local equivalence class. Both the Q-point and the M point
have local invariants of g1 = 1

4 , g2 = 0, g3 = 1. Since the optimization was
performed in g-space, these two points are not distinguishable; indeed, for
long gate durations, the Q-optimization successfully reached the M point.

In comparison with the local invariants optimization, the perfect entan-
glers functional shows excellent performance. It automatically identifies
the optimal gate for a given gate duration and reaches significantly better
fidelities. This is due to the fact that the desired entangling power of U can
usually be obtained in just a few tens of iterations of the algorithm, and the
remainder of the optimization then focuses on improving the unitarity of the
obtained gate Ũ . Most strikingly, we find that for the optimization towards
a specific local equivalence class, the convergence rate becomes extremely
small as the optimum is approached. All the results shown in Fig. 6.4
are converged to a relative change below 10−4, such that no measurable
improvement can be expected within a reasonable number of iterations.
While in principle (due to the full controllability of the system), the direct
optimizations should yield arbitrarily small gate errors, as long as the gate
duration is above the quantum speed limit, in practice this depends on
numerical parameters such as the weight λa in Krotov’s method and may
take a extremely large number of iterations or stagnate, as we observe
here. The perfect entangler optimization shows remarkable robustness with
respect to this issue. We observed very little slow-down in convergence. The
black curve in Fig. 6.4 for the PE-optimization already yields a significantly
smaller optimization error than any of the LI-optimizations, but is only
converged to a relative change of 10−2. Even the gray dash-dash-dotted
curve, labeled PE∗, is only converged to a relative change of 10−3, and thus
the optimization would still yield considerably better results if it were to be
continued.

The values of the optimization error in Fig. 6.4 of 10−3 or 10−2 should
not be understood to indicate a gate error above the quantum error correc-
tion threshold. Whereas the optimization error relates only to a figure of
merit used for optimization, the relevant physical quantity that would be
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Figure 6.5: Analysis of the sources of error for PE of 2 transmon qubits:
Population loss from the logical subspace (light red squares), concurrence error of
the closest unitary gate Û in the logical subspace (blue circles), and average gate
error, εavg = 1− Favg, with which Û is implemented (red circles).

determined in an experiment is the average gate fidelity, Eq. (2.88).
Figure 6.5 shows the generated entanglement as measured by the con-

currence and the average gate error, εavg = 1 − Favg, together with the
population loss from the logical subspace. Ô is taken to be the unitary
that is closest to the projection of the realized operation from the full
Hilbert space onto the logical subspace. For T > 50ns, the gate errors are
at or below 10−4. For shorter gate durations, insufficient entanglement is
generated, cf. blue dashed curve in Fig. 6.5. Once T is sufficiently large
to generate the desired entanglement, the only source of error is loss of
population from the logical subspace, shown in light red in Fig. 6.5. This
loss does not depend on the choice of the weight w in Eq. (6.15). When the
gate duration is increased, optimization yields gates that are exponentially
more unitary, as indicated by the linear decrease of the average gate error
in our semi-log plot. The difficulty to ensure unitarity on the logical sub-
space is typical for weakly anharmonic ladders, as found in superconducting
transmon or phase qubits. Optimal control can be successfully employed to
tackle the problem of ensuring unitarity in the logical subspace, in addition
to generating entanglement.





7
Efficient Optimization of Unitaries in

Liouville Space

The preceding chapters 4 and 6 have illustrated the power of optimal control
theory (OCT) for the robust implementation of quantum gates. Both
dissipation and classical noise can be taken into account explicitly in the
functional, allowing OCT to determine the pathways that result in the best
possible fidelities under the present physical constraints. Using more general
functionals to give the optimization more freedom can greatly enhance the
chances of success.

Many implementations of quantum computing show continuing advances
in maintaining coherence. For superconducting qubits, coherence times have
increased from 2 ns for the first Cooper pair boxes [209] to ∼0.1 ms for 3D
transmons [242], an improvement over five orders of magnitude. In light
of this, it may be possible to forgo a treatment in Liouville space, using
OCT together with the perfect-entanglers functional to bring two-qubit gate
durations to the quantum speed limit. Ideally, the quantum gate can be
realized on a time scale where decoherence is not relevant. However, as long
as at least some channels of dissipation act on the time scale of the gate
implementation, a realistic description will generally require to modeling
the dynamics in Liouville space. Moreover, in a non-Markovian setting, it
may be possible to exploit strong interactions with parts of the environment
to aid the implementation of a quantum gate [243].

Modeling quantum dynamics in Liouville space raises the question of
numerical efficiency. Compared to Hilbert space, where states are described

135



136 7. Efficient Optimization of Unitaries in Liouville Space

as a complex vector of dimension N , the corresponding density matrix
has dimension N2. Moreover, optimization for a quantum gate using the
standard functionals presented in chapter 3 requires to propagate a full basis
of the logical subspace of dimension d. Again, this scales quadratically in
Liouville space. For gradient-based optimization schemes such as GRAPE
or Krotov’s method, it is necessary to store the entire time evolution of
each required state, see Fig. 3.1. This can quickly push the boundaries of
available numerical resources. For example, optimizing a two-qubit gate,
d = 4, on a Hilbert space of modest dimension N = 500 (e.g., two transmon
qubits with 5 levels coupled to a cavity of 20 levels) requires 4 megabyte
storage for a single state. For a time discretization of only 1000 steps,
at least 16000 states (1000 × 16 matrices spanning the logical Liouville
subspace) must be kept in memory, requiring 64 gigabytes of memory.

This chapter, adapted from Ref. [196], illustrates that it is not necessary
to propagate a full basis of Liouville space when optimizing for a unitary
operation. This insight builds on results from quantum tomography [77,
78, 244] concerning the minimum resources required to characterize the
implementation of quantum gates. In essence, the direct extension of
functionals such as Eq. (3.39) and Eq. (3.40) from Hilbert to Liouville
space [66, 245, 246] overlooks the fact that in quantum gate optimization,
the target is a unitary operation and not a general dynamical map. Thus,
the gate fidelity can be determined without a full reconstruction of the
dynamical map, which would indeed require a basis that spans the full
Liouville space.

In general, propagation of only three states is sufficient to optimize a
quantum gate. Mathematically, this is based on the observation that only
two states are necessary to distinguish any two unitaries, irrespective of
Hilbert space dimension [77]. A third state is required to enforce that the
dynamical map on the optimization subspace is contracting and population
conserving.

If the system Hamiltonian only allows for the implementation of diagonal
gates, the number of required states reduces to two; this is demonstrated for
the example of a Rydberg gate, using the same model as in chapter 4. The
general case of non-diagonal quantum gates is illustrated by a

√
iSWAP

gate on transmon qubits, using the same model as in chapter 6. While
the use of three, respectively two states is sufficient in principle, the rate
of convergence can be improved by extending the number of states. This
corresponds to the observation that while two states represent the minimal
set of states required to distinguish any two unitaries, they do not allow to
deduce bounds on the gate error [77]. A set of d or 2d allows to determine
a numerical and analytical bound, respectively. Therefore, depending on
the desired gate error, propagation of either d+ 1 (including the extra state
required to enforce unitarity) or 2d states is the numerically most efficient
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choice. Already for a two-qubit gate, this represents a significant reduction
in the number of states that need to be propagated, from 16 for the full
Liouville space basis to 8 and 5, respectively.

7.1 A Minimal Set of States for the Optimal
Control of Unitaries

7.1.1 Unitary Operations in Liouville Space
When optimizing a quantum gate Ô, we require that despite the presence
of dissipation, the evolution of a state ρ̂ is unitary,

ρ̂(T ) = E ρ̂(t = 0) ≡ Ûρ̂(0)Û† , (7.1)

or at least as unitary as possible. In a second step, we then require that
the obtained gate Û is identical to the desired gate Ô. Intuitively, Eq. (7.1)
is fulfilled if any pure state remains pure under propagation. If we assume
that the dynamics are indeed unitary, we may the ask how to determine
the implemented gate U by propagating a well-chosen set of states. If we
know U to be diagonal,

Û = diag
(
eiφ00 , eiφ01 , eiφ10 , eiφ11

)
, (7.2)

this becomes quite easy, as we only need to determine the four phases to
specify the gate. Propagation of the state ρ̂sp corresponding to the coherent
superposition of all d logical basis states,(

ρ̂sp(0)
)
ij

= 1
d
, (7.3)

yields

Ûρ̂spÛ† =


1 ei(φ1−φ2) ei(φ1−φ3) ei(φ1−φ4)

ei(φ2−φ1) 1 ei(φ2−φ3) ei(φ2−φ4)

ei(φ3−φ1) ei(φ3−φ2) 1 ei(φ3−φ4)

ei(φ4−φ1) ei(φ4−φ2) ei(φ4−φ3) 1

 . (7.4)

We may choose φ1 = 0, which corresponds to a specific global phase; all other
phases can then directly be read off from the entries of Eq. (7.4). When Û
is not diagonal, the result of propagating a mixed state with non-degenerate
eigenvalues, e.g.

(ρ̂mixed)ij = 2 (d− i+ 1)
d (d+ 1) δij , (7.5)
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can be diagonalized to obtain the basis {|Ψ̃k〉}. We then use that Û can be
written as [244]

Û =
∑
k

eiφk |Ψ̃k〉〈Ψk| , (7.6)

where {|Ψk〉} are the canonical basis states. The phases are obtained from
the propagation of ρ̂sp above, as

φk = arg
〈

Ψ̃k

∣∣∣ ρ̂sp(T )
∣∣∣ Ψ̃1

〉
. (7.7)

The numerical diagonalization that is required in order to construct the
gate means that there is no way to calculate analytical derivatives of Û.
While a direct gate optimization with functionals based on Eq. (3.38) and
using Krotov’s method is possible, more advanced functionals that depend
explicitly only on Û, such as those discussed in chapter 6, are not available
as easily. They require an analytical construction of

Û =


r11eiφ11 r12eiφ12 r13eiφ13 r14eiφ14

r21eiφ21 r22eiφ22 r23eiφ23 r24eiφ24

r31eiφ31 r32eiφ32 r33eiφ33 r34eiφ34

r41eiφ41 r42eiφ42 r43eiφ43 r44eiφ44

 , (7.8)

in the case of a two-qubit gate. Such a construction is provided by propa-
gating the d states that contain a non-zero element only in the first column,
e.g. the dyadic products

ρ̂1 = |00〉〈00| , ρ̂2 = |01〉〈00| , (7.9a)
ρ̂3 = |10〉〈00| , ρ̂4 = |11〉〈00| . (7.9b)

The entries (a, b) of the propagated state ρ̂k are(
Ûρ̂kÛ†

)
ab

= rb1raiei(φai−φb1) . (7.10)

The propagation of ρ̂1 alone determines all the entries in the first column of
Eq. (7.8) (again with choosing one of the phases as zero). Plugging in the
obtained values into the propagation of ρ̂2 then completely determines the
second column of Eq. (7.8), and so forth. This gives an explicit construction
of Û, which now in principle allows to calculate the necessary derivatives
for functionals like the one for a general perfect entangler, see appendix G.

So far, we have only considered how to obtain the gate Û under the
assumption that the dynamical map is unitary. However, when not prop-
agating the full basis of Liouville space, it is not guaranteed that the
non-unitarity is detectable from the time evolution of propagated states.
The non-unitarity might be either due to dissipation, or due to loss from
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the logical subspace by leakage into higher levels. It can be shown [196, 77]
that for a direct gate optimization, in addition to the states in Eq. (7.3) and
Eq. (7.5), a third state must be added to guarantee that the optimization
is able to detect non-unitarity in the dynamical map. The optimization is
successful if, and only if

ρ̂k(T ) = Ôρ̂k(0)Ô† (7.11)

for the three states ρ̂k. The total set of states that is sufficient for a direct
gate optimization reads

(ρ̂1(0))ij = 2 (d− i+ 1)
d (d+ 1) δij , (7.12a)

(ρ̂2(0))ij = 1
d
, (7.12b)

(ρ̂3(0))ij = 1
d
δij , (7.12c)

where the matrix elements are given in the optimization subspace, all other
elements are zero. For the optimization with a functional that depends
explicitly only on Û, as discussed above, unitarity is guaranteed by the
functional [244]

JU =
3∑

k=1

d∑
l=1

tr2
[
ρ̂lk(T )− ρ̂lk

]
(7.13)

going to zero for the three states defined in Eq. (7.12).

7.1.2 Optimization Functional
In order to employ optimal control theory, we must define a distance measure
JT between the desired unitary Ô and the actual evolution, as a final time
functional. We generalize Eq. (3.40) to

JT = 1−
n∑
k=1

wk

tr[ρ̂2
k(0)]

Re
{

tr
[
Ôρ̂k(0)Ô†ρ̂k (T )

]}
, (7.14)

with n = 3 and using the states ρ̂k(0) defined in Eq. (7.12). This is in
contrast to Refs. [66, 245, 246], where n was taken to be the Liouville
space dimension corresponding to Ô, i.e., n = 22N for N qubits, and ρ̂k an
orthonormal basis (under the Hilbert-Schmidt product) of Liouville space.
The three states are constructed such that the first one fixes a basis, and the
corresponding Hilbert-Schmidt product in Eq. (7.14) checks whether the
gate is correctly implemented in this basis. It misses errors for gates that
are diagonal in the basis, i.e., phase errors [77]. The second state is therefore
chosen to detect phase errors with its contribution to Eq. (7.14) [77]. The
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term for the third state determines whether the dynamical map attained
at time T conserves the population within the optimization subspace. In
Eq. (7.14), wk are weights, normalized as ∑n

k=1wk = 1, that allow to put
more or less importance to the properties checked by each of the three
states. In order to evaluate JT , the time evolved states ρ̂k(T ) need to be
obtained by solving the equation of motion describing the open system’s
evolution for ρ̂k. While in general the dynamics can be non-Markovian, we
will restrict ourselves to a Markovian master equation in the examples below.
We assume the coherent part to include coupling to an external control, i.e.,
the Hamiltonian is of the form Ĥ(t) = Ĥ0 + ε(t)Ĥ1, and generalization to
several controls εi(t) is straightforward.

The states ρ̂1 and ρ̂2 of Eq. (7.12), while sufficient in principle to dis-
tinguish any two unitaries, do not allow for stating bounds on the gate
error [77]. Meaningful bounds on the gate error can be obtained numerically
by replacing ρ̂1, ρ̂2 by a set of d+ 1 states, whereas analytical bounds can
be deduced from 2d states [77, 247, 248]. Motivated by this fact, we define
two additional sets of states that can be employed in Eq. (7.14). When
n in Eq. (7.14) is taken to be equal to d + 1, the totally mixed state of
Eq. (7.12a) is replaced by d pure states,

ρ̂j(0) = |ϕj〉〈ϕj | , (7.15)

with j = 1, . . . , d and {|ϕj〉} the logical basis. ρ̂d+1(0) is simply equal
to ρ̂2(0) of Eq. (7.12b). In this case, Eq. (7.12c) is not required since
the d + 1 pure states are sufficient to enforce the dynamical map on the
optimization subspace to be contracting and norm conserving. Similarly, the
functional (7.14) employing n = 2d states is constructed by replacing ρ̂1(0)
of Eq. (7.12a) by ρ̂j , j = 1, . . . , d of Eq. (7.15) and ρ̂2(0) of Eq. (7.12b) by

ρ̂d+j(0) = |ϕ̃j〉〈ϕ̃j | , (7.16)

with j = 1, . . . , d, where the states |ϕ̃j〉 form a mutually unbiased basis [249,
250] with respect to the canonical basis {|ϕj〉}. For two qubits (d = 4), an
example for such a basis is given by

|ϕ̃1〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉) , (7.17a)

|ϕ̃2〉 = 1
2 (|00〉 − |01〉+ |10〉 − |11〉) , (7.17b)

|ϕ̃3〉 = 1
2 (|00〉+ |01〉 − |10〉 − |11〉) , (7.17c)

|ϕ̃4〉 = 1
2 (|00〉 − |01〉 − |10〉+ |11〉) . (7.17d)
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7.1.3 Optimization with Krotov’s Method

In order to obtain an update equation for Krotov’s method, a field dependent
constraint as in Eq. (3.61) is added to the final time functional, Eq. (7.14). As
discussed in chapter 3, more complex additional constraints are conceivable,
for example restricting the spectral width of the pulse or confining the
accessible state space [159, 158]. The full optimization functional is linear
in the states ρ̂k(T ) and does not depend on the states at intermediate
times t, so that the linear version of Krotov’s method is sufficient to yield a
monotonically convergent optimization algorithm. Modeling the dissipative
time evolution by a Markovian master equation,

dρ̂

dt
= L(ρ̂) = −i[Ĥ(t), ρ̂] + LD(ρ̂) , (7.18)

the control equations then read

∂ρ̂k
dt

= −i[Ĥ, ρ̂k] + LD(ρ̂k) , (7.19a)
∂σ̂k
dt

= −i[Ĥ, σ̂k]− LD(σ̂k) and σ̂k(t = T ) = wk

tr[ρ̂2
k(0)]

Ôρ̂k(0)Ô† ,

(7.19b)

∆ε(t) = S(t)
λa

n∑
k=1

Im

{
tr
(
σ̂old
k (t)∂L (ρ̂k)

∂ε

∣∣∣
ρnew
k

,εnew

)}
(7.19c)

with k = 1, 2, 3 when the initial conditions ρ̂k(0) of Eq. (7.12) are employed
or k = 1, . . . d2 with d the dimension of Hilbert space when a full basis of
Liouville space is propagated. In Eq. (7.19c), the states σ̂old

k are backward-
propagated with the pulse of the previous iteration (’old’), whereas the
states ρ̂new

k are forward-propagated with the updated pulse (’new’). The
derivative with respect to the field is given by the commutator

∂L (ρ̂)
∂ε

= −i
[
∂Ĥ
∂ε
, ρ̂

]
(7.20)

and has to be evaluated for the ‘new’ field and the states ρ̂ propagated
under the ‘new’ field. For a complex control, which occurs for example when
using the rotating wave approximation (RWA), Eq. (7.19c) holds for both
the real and the imaginary part of ε(t).

The value of the optimization functional in Eq. (7.14) depends on the
number and the specific choice of initial states as well as the choice of
weights. It is therefore not suitable to compare the convergence behavior
between different sets of states. Instead, we employ the average gate fidelity
as defined in Eq. (2.89).
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single-photon detuning ∆1 600 MHz
two-photon detuning ∆2 0
excitation energy E1 6.8 GHz
Rabi frequencies ΩR, ΩB 300 MHz
interaction energy U 50 MHz
lifetime τ = 1/γ 25 ns

Table 7.1: Parameters of the Hamiltonian, Eq. (4.1), for implementing a
controlled phasegate with two rubidium atoms.

|0〉 |1〉

|i〉

|r〉

∆1

∆2

ΩR(t)τ

ΩB(t)

Figure 7.1: Atomic levels for two-photon near-resonant excitation to a Rydberg
state.

7.2 Example I: Diagonal gates
It is quite common that a two-qubit Hamiltonian allows only for diagonal
gates, such as a controlled phasegate. A prominent example are non-
interacting qubit carriers that interact only when excited into an auxiliary
state where they accumulate a non-local phase [178]. Neutral trapped atoms
with long-range interaction in a Rydberg state, discussed in chapter 4,
present a physical implementation of this setting [178, 166]. We consider
here the same system as in chapter 4, albeit in a slightly different parameter
regime. The parameters correspond to optically trapped rubidium atoms (as
opposed to cesium atoms in chapter 4) and are summarized in Table 7.1. As
before, the excitation to the Rydberg state proceeds by a near-resonant two-
photon process via an intermediary state. As shown in Fig. 7.1, the transition
|0〉 → |i〉 now corresponds to a red laser frequency, whereas |i〉 → |r〉 is
a blue frequency, in contrast to Fig. 4.2. The gate is implemented for
non-individually addressable atoms, and outside of the Rydberg blockade
regime [178], cf. the discussion in chapter 4. The Hamiltonian and the
equation of motion is given by Eqs. (4.1–4.4).

Figure 7.2 shows the gate error of the controlled phasegate versus iteration
of the optimization algorithm when using a full basis, i.e., 16 states, or using
three, respectively two, states in Eq. (7.14). The minimum number of states
in this example is two since the Hamiltonian admits only diagonal gates,
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Figure 7.2: Optimizing a controlled phasegate for two trapped neutral atoms that
are excited to a Rydberg state. The convergence is shown as the gate error,
1− Favg, over OCT iterations, using the full basis as well as several reduced sets
states. The calculations employ equal weights of all states, except for those shown
in orange where w2/w3 = 10. The optimization shown in the bottom panel takes
into account spontaneous emission from the intermediate state, with a lifetime of
τ = 25 ns. The gate duration is T = 50 ns for the top and middle panels, and
T = 75ns for the bottom panel. The number of iterations and the reached gate
error differ significantly in all three situations, cf. the different x- and y-axes scales.

i.e., only phase errors and norm conservation within the logical subspace
have to be checked. Therefore, ρ̂1 in Eq. (7.12a) can be omitted, and the
two remaining states are ρ̂2 (phase errors) and ρ̂3 (norm conservation) of
Eqs. (7.12b, 7.12c). The relative weights w2 and w3 in Eq. (7.14) can be
modified to emphasize one of the two aspects. Figure 7.2 therefore also
compares two states with equal and unequal weights in Eq. (7.14), cf. green
dotted and orange solid lines. The fastest convergence was obtained for
w2/w3 = 10. The panels from top to bottom show the optimization without
any dissipation, starting from a well-chosen guess pulse; an optimization
starting with a bad guess pulse of insufficient fluence; and an optimization
taking into account spontaneous decay from the intermediate level. As the
main observation, Fig. 7.2 clearly demonstrates that only two states are
sufficient to optimize a quantum gate for a Hamiltonian of this kind. The
optimization for coherent time evolution (top panel), shows that while the
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use of three states converges to gate errors as small as those obtained with
the full basis, the convergence rate is only about half that of the full basis.
This is due to two factors: (i) For the optimization with three states, there
is no bound on the distance between the value JT and the gate error, such
that the path in the optimization landscape may be less direct until an
asymptotic value is reached. Since without dissipation, there is no limit to
the gate error, the convergence of JT and that of 1− Favg stay on different
trajectories. (ii) The reduced sets of states are constructed specifically to
take into account decoherence. In particular, the third state contributes
significantly less information that is relevant for reaching the optimization
target than the second state. The convergence can be improved dramatically
by weighting the three states according to the relevance of the information
they carry. In this respect, the use of only two initial states can be seen
as choosing w1 = 0. Taking w2 > w3 addresses the issue of ρ̂3 contributing
less to the optimization. Choosing proper weights allows for ensuring the
convergence of optimization with a reduced set of states to be as fast as the
optimization using the full basis.

The importance of choosing weights appropriate to the optimization
problem becomes even more evident when the optimization starts from
a bad guess pulse of insufficient fluence, as shown in the center panel of
Fig. 7.2. The features observed in Fig. 7.2 are typical: The plateau near
the beginning corresponds to the optimization increasing the intensity of
the pulse without any significant improvement in the gate error, before
converging quickly once the pulse is sufficiently intense. The end of the
plateau can be significantly influenced by the choice of weights, cf. solid
orange and dotted green curves in the middle panel of Fig. 7.2. Remarkably,
the optimal choice of using two properly weighted initial states outperforms
the use of the full basis. This might be explained by the fact that each of
the three states in the reduced set has a specific physical role to play in the
optimization, and this role can be emphasized by choice of the weight. In
contrast, all states in the full basis fulfill the same role in the optimization,
and thus there is no way in which different weights on individual states
would improve the convergence.

One should point out that even in the cases where the use of two or
three states shows a slower convergence than that of the full basis, they
still outperform the full basis in terms of numerical resources. Since both
CPU time and the required memory scale linearly with the number of initial
states in the optimization, using only two states compared to 16 has a 1:8
advantage, which more than offsets the factor of two in the convergence
rate in the middle panel of Fig. 7.2.

Naturally, without the presence of decoherence, there is no reason to
perform the optimization in Liouville space. Therefore, the results shown
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here only serve to illustrate the general convergence behavior of a reduced
set of initial states. The more relevant case of non-coherent dynamics is
shown in the bottom panel of Fig. 7.2. The presence of decoherence implies
the existence of an asymptotic bound on the gate error. This constraint
on the optimization landscape (together with the further constraint that
only diagonal gates are reachable) ensures that all sets of reduced states
converge at a similar rate, once the asymptotic region is approached. We
expect that all choices reach the same asymptotic value; which choice yields
the best fidelity after a specific number of iterations cannot be predicted in
general. Factoring in all necessary resources, optimization using two states
with unequal weights dramatically outperforms optimization using the full
basis in this example.

The optimized pulse and spectrum in the case of coherent dynamics is
presented in Fig. 7.3. The result shown here is obtained from the opti-
mization using two initial states with unequal weights. However, the pulse
is indistinguishable from the one obtained using the full basis, consistent
with the identical convergence behavior for the two sets in the upper panel
of Fig. 7.2. The optimized pulses only show relatively small amplitude
modulations compared to the guess pulse (dotted line). These modulations
appear as small side-peaks in the spectrum. In the time interval in which
there is a significant pulse amplitude, the complex phase only deviates by
about π

10 from zero. This phase evolution is reflected in the asymmetry of
the spectrum for the red and the blue pulse (bottom panel). The spectrum
nicely illustrates the mechanism of control: while each spectrum by itself
is asymmetric, the red pulse showing negative frequencies, the blue pulse
showing positive frequencies, the sum of both pulses is again symmetric,
i.e., positive and negative frequencies cancel out. This means that the com-
bination of both pulses is two-photon resonant with the transition |0〉 → |r〉,
providing multiple pathways for the same transition whose interference
might be exploited by the optimization.

The population dynamics induced by the optimized pulses are shown
in Fig. 7.4. The two-photon resonance of the pulse expresses itself in a
direct Rabi cycling (see appendix C) between |0〉 and |r〉 on the left qubit
in the propagation of |01〉 (top panel). The population shows roughly a 4π
Rabi flip due to the relatively high pulse intensity. The nearly 25% of the
population in the intermediate states in the propagation of |00〉 (bottom
panel) is due to the fact that the decay from these levels was not included
in the optimization, and thus the optimization algorithm makes no attempt
at suppressing population in these states.

For the optimization with dissipation, the optimized pulse and pulse
spectrum is shown in Fig. 7.5. The characteristics of the pulses are quite
different compared to the coherent case. The red pulse remains close to the
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Figure 7.3: The optimized pulses ΩB,R(t) for the blue and red laser cf. Fig 7.1,
resulting from optimization using two states with unequal weights without
spontaneous decay (corresponding to the orange solid line in the top panel of
Fig. 7.2). The pulse amplitudes are shown in the top panel, the complex phase in
the center panel, and the pulse spectrum in the bottom panel. The guess pulse,
indicated by the black dotted line in the top panel, is identical for both the red
and the blue laser. In the spectrum, frequency 0 corresponds to the carrier
frequencies of the laser pulses.
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Figure 7.4: Population dynamics under the pulse shown in Fig. 7.3, for the logical
basis states |01〉 (top) and |00〉 (bottom). The intermediate population (”int”) is
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single Gaussian peak of the guess pulse, except for being slightly narrower.
The blue pulse has a more complex structure. It is overall broader than
the red pulse and consists of three distinctive features: an initial peak
that overlaps but precedes the red pulse, followed by some amplitude
oscillations in the center of the pulse, and lastly another peak symmetric to
the first, thus following the red laser pulse, with some overlap. For both
pulses, the complex phase, shown in the center panel, is close to zero when
there is significant pulse amplitude. In the spectrum (bottom panel), the
overall narrowing and broadening of the red and blue pulse, respectively, is
reflected in a broadening and narrowing of the central peak in the spectrum.
The amplitude modulations on the blue pulse appear as side-lobes in the
spectrum.

The initial and final peak of the blue pulse, together with the red pulse
are reminiscent of the counter-intuitive pulse scheme of STIRAP, with the
blue laser acting as the “Stokes” pulse and the red laser as “pump”. The
STIRAP-like behavior appears also in the population dynamics, shown in
Fig. 7.6, as a population inversion between level |0〉 and |r〉, without any
population in the intermediate decaying state. The amplitude modulations
in the central region of both pulses then induce some additional dynamics,
generating the entanglement needed for the gate. Note that the pulse
duration for the dissipative process (T = 75 ns) is longer than that of the
coherent process (T = 50 ns). This is necessary to allow for an adiabatic
time evolution that is essential to the STIRAP-like behavior. Overall, the
decaying intermediate state population (red lines in Fig. 7.6) is almost
completely suppressed, which is in contrast to the optimization not taking
into account the dissipation, cf. the red lines in Fig. 7.4. Both Figs. 7.4
and 7.6 show a significant population of the |rr〉 state. This is not surprising
since the parameters of Table 7.1 are not in the regime of the Rydberg
blockade [178, 166].

7.3 Example II: Non-diagonal gates

Superconducting qubits represent a physical realization of a quantum proces-
sor where the Hamiltonian admits both diagonal and non-diagonal entangling
gates. In fact, there exist superconducting architectures that admit several
two-qubit gates simultaneously [251, 222]. We consider here the example of
two transmon qubits coupled via a shared transmission line resonator. In
the dispersive limit, the interaction of each qubit with the resonator leads
to an effective coupling J between the two qubits, and the cavity can be
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Figure 7.5: The optimized pulses resulting from optimization using two weighted
states and including spontaneous decay (orange solid line in Fig. 7.2, bottom
panel), using the same conventions as Fig. 7.3.
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Figure 7.6: Dissipative population dynamics under the pulse shown in Fig. 7.5, for
the initial states ρ̂(0) = |01〉〈01| (top) and ρ̂(0) = |00〉〈00| (bottom). The
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qubit frequency ω1 4.3796 GHz
qubit frequency ω2 4.6137 GHz
drive frequency ωd 4.4985 GHz
anharmonicity α1 −239.3 MHz
anharmonicity α2 −242.8 MHz
effective qubit-qubit coupling J −2.3 MHz
qubit 1 decay time T1 38.0 µs
qubit 2 decay time T1 32.0 µs
qubit 1 dephasing time T ∗2 29.5 µs
qubit 2 dephasing time T ∗2 16.0 µs

Table 7.2: Parameters of the transmon Hamiltonian, Eq. (7.21), and Liouvillian,
Eq. (7.22), taken from Ref. [222].

integrated out [222]. The resulting Hamiltonian reads, cf. Eq (5.30),

Ĥ =
∑
i=1,2

((
ωi −

αi
2

)
b̂†i b̂i + αi

2
(

b̂†i b̂i
)2)

+

+ Jeff
(

b̂†1b̂2 + b̂1b̂†2
)

+ ε(t)
(

b̂1 + b̂†1 + b̂2 + b̂†2
)
,

(7.21)

where b̂1,2, b̂†1,2 are the ladder operators for the first and second qubit,
ω1,2 and α1,2 represent the frequency and anharmonicity, J is the effective
qubit-qubit-interaction, and ε(t) is the driving field, see Eq. (5.37). The two
most relevant dissipation channels are energy relaxation and pure dephasing
of the qubits, described by the decay rate γ = 1/T1 and dephasing rate
γφ = 1/T ∗2 for each qubit. The corresponding dissipator reads

LD(ρ̂) =
∑
q=1,2

(
γq

N−1∑
i=1

iD
[
|i− 1〉〈i|q

]
ρ̂+ γφ,q

N−1∑
i=0

i2D
[
|i〉〈i|q

]
ρ̂

)
, (7.22)

with
D
[
Â
]
ρ̂ = Âρ̂Â† − 1

2
(

Â†Âρ̂+ ρ̂Â†Â
)
, (7.23)

and each qubit, q = 1, 2, truncated at level N . The parameters of the
coupled transmon qubits are summarized in Table 7.2. We employ a RWA,
centered at the drive frequency ωd. The pulse is then described by the shape
Ω(t) instead of the fast-oscillating ε(t), see Eq. (5.39).

The Hamiltonian in Eq. (7.21) can generate a large number of entangling
two-qubit gates; we find

√
iSWAP to be a fast converging non-diagonal
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Figure 7.7: Optimizing a
√
iSWAP gate for two transmons in the presence of

energy relaxation and pure dephasing (with the rates given in Table 7.2):
Convergence for five choices of sets of initial states, as described in the text. The
gate duration is T = 400 ns. The panels from top to bottom show the gate error
over the number of iterations; the gate error over the number of state
propagations, indicative of the required CPU time; a zoom on the initial phase of
the optimization; and a zoom on the asymptotic convergence (panels c and d both
using a linear scale).

perfect entangler, and thus choose

Ô =


1 0 0 0
0 1√

2
i√
2 0

0 i√
2

1√
2 0

0 0 0 1

 (7.24)

as the optimization target. Figure 7.7 shows the convergence behavior for
several choices of initial states: the 16 canonical states of the full basis of
Liouville space; the three states given in Eq. (7.12) with equal weight and
with w1/w2 = w1/w3 = 20; a set of 5 states consisting of ρ̂1 expanded into
four pure states, cf. Eq. (7.15) plus ρ̂2 of Eq. (7.12b); and lastly a set of
eight states, cf. Eqs. (7.15) and (7.16), consisting of the expansion of ρ̂1 and
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the four pure states of a mutually unbiased basis, as explained in section 7.1.
As seen in the top panel, all choices show good convergence. A plateau
corresponding to a slowing of convergence is observed only for the three
states with equal weights. But even in this case, the same asymptotic value
for the gate error is obtained as for the other choices, see also Fig. 7.7 (d).
The advantage of employing the reduced sets of states in the optimization
functional, Eq. (7.14), becomes most apparent in Fig. 7.7 (b) which shows the
gate error over the number of state propagations. Since optimization requires
two propagations per iteration and state, i.e., the backward and forward
propagation in Eq. (7.19), the number of state propagations corresponds
directly to the CPU time that is required to obtain a given fidelity. That is,
in panels (b-d), the lines are simply rescaled depending on the respective
number of states. Figure 7.7 (c) and (d) show a zoom on the same data, once
for the initial phase of the optimization and once for the asymptotic behavior.
All reduced sets except for the three states with equal weights perform better
than the full set during the initial phase. Also, for this specific optimization
problem, all reduced sets reach a slightly better asymptotic value than the
full set, although we expect that ultimately all curves will converge to the
same value. Figure 7.7 suggests that the reduced sets have a significant
advantage in reaching a good fidelity with a given amount of resources,
especially since in practice, an optimization is usually stopped near the
beginning of the asymptotic regime. Indeed, the full set shows an advantage
only in the intermediate regime between gate errors of 10 and 1 percent, and
only over the sets of three states. The choice of 5 or 8 states outperforms
the full set in all cases. One should note that the savings in computational
resources due to the use of a reduced set of states also extends to the amount
of memory required, which is proportional to the number of states. Since
in the optimization algorithm, propagated states over the entire time grid
need to be stored, these savings can be very substantial.

For the three states with equal weights the gate error shows a non-
monotonic behavior in the upper left corner of Fig. 7.7 (c). This is due to
the optimization functional, Eq. (7.14), not being equivalent to the gate
error Favg, Eq. (2.89). Specifically, for a set of three states, no bound on the
distance between JT and 1− Favg can be derived [77]. Thus, the gate error
might increase even though JT decreases. In fact, the behavior of JT is fully
monotonic as expected (data not shown). With an increasing number of
states in the chosen set, the value of the optimization functional is more
closely connected to the gate fidelity; and for 5 and 8 states numerical,
respectively analytical, bounds can be found [77, 247]. For this reason, we
expect the sets of 5 and 8 states to show a faster convergence than the 3
states, when measured in OCT iterations, although not necessarily in CPU
time. This expectation is confirmed by Fig. 7.7. The weak correspondence
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between the optimization functional and the gate error for three states is
most likely also the reason for the plateau observed for the red dashed
line in Fig. 7.7 (a) and (b). However, the use of three states can still be a
good choice since weighting the states properly improves the convergence
significantly. The weights have to be chosen empirically, but the choice
can be guided by physical intuition. The three states are responsible for
ensuring that the realized gate is diagonal in the correct basis, that the
relative phases match the target once the correct basis has been found, and
that the gate is unitary on the logical subspace, respectively. The weights
should reflect which of these requirements is most difficult to realize. In the
present example this is finding the correct basis in which the gate is diagonal.
Therefore the choice of w1/w2 = w1/w3 = 20 gave the best convergence rate.
This is in contrast to the optimization of the Rydberg gate in section 7.2, in
which the gate was already known to be diagonal, and the first state could
be left out of the optimization entirely. Generally, using the set of three
states with equal weights is not recommended.

Comparing Fig. 7.7 with the bottom panel of Fig. 7.2 for the Rydberg
gate shows that the different choices of basis sets show a slightly wider
range of the convergence rate. This can be attributed to the fact that for
the Rydberg gate, the optimization landscape is severely constrained since
only diagonal gates can be reached. In contrast, the transmon Hamiltonian
can generate both diagonal and non-diagonal gates, resulting in a more
complex optimization landscape. Different choices of initial states can thus
take more strongly varying pathways.

It must be noted that the different pathways through the optimization
landscape for different choices of the set of states or different weights result
in optimized fields that are generally not identical. For the Rydberg gate,
where the dynamics are constrained to be diagonal, pulses with the same
fidelities are virtually indistinguishable. This is not the case for the transmon
qubits. Here, there are at least slight differences in the pulses obtained
asymptotically, and even for pulses with identical fidelities (at crossing
points of the curves in Fig. 7.7). This illustrates that the solution to an
optimal control problem is in general not unique. Different solutions with
identical fidelities can also be obtained e.g. by starting from different guess
pulses.

Figure 7.8 shows the optimization of a
√
iSWAP gate for two transmons

in the case of weak dissipation, where the decay and dephasing times from
Table 7.2 have been increased by a factor of 10. A comparison of Fig. 7.8 (a)
with Fig. 7.7 (a) shows that the convergence behavior is essentially the
same except for the value of the asymptote. We find an asymptotic gate
error of approximately 7× 10−3 with full dissipation, 7× 10−4 with weak
dissipation, and no asymptote without dissipation (data not shown). The
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Figure 7.8: Optimizing a
√
iSWAP gate for two transmons with weak dissipation,

using decay and dephasing times increased by a factor of 10 compared to Fig. 7.7
(with all quantities and labels as defined in Fig. 7.7). The gate duration is
T = 400 ns. The weaker dissipation results in an asymptotic gate error of
approximately 7.5× 10−4 compared to 7.5× 10−3 in Fig. 7.7, cf. the y-axis scales
in both figures.

value of the asymptote is logarithmically proportional to the decay and
dephasing rates. This is as expected since the pulse duration is kept constant
at 400 ns and the gate fidelity is solely limited by dissipation. Our claim
that the dissipation only affects the asymptotic convergence is supported by
a comparison of the initial convergence in Figs. 7.7 (c) and 7.8 (c), which
remarkably are completely identical. Furthermore, the crossing between the
black solid and red dot-dashed lines for the full basis and the three states
with unequal weights near 1000 propagations and that between the blue
dotted and orange dash-dash-dotted lines for the sets of 5, respectively 8,
states near 1300 propagations in Fig. 7.8 (d) can also be seen in Fig. 7.7 (d).
There are however some slight differences in the asymptotically reached
values, in that the choice of 3 states (with both equal and unequal weights)
reaches a slightly smaller gate error than in the case of full dissipation.
Again, we expect that ultimately, all curves will converge to the same value.
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Figure 7.9: Shape and spectrum of an optimized pulse, from optimization with 3
weighted states, with strong dissipation. The panels from top to bottom show the
amplitude, complex phase, and spectrum of the optimized pulse Ω(t). The
spectrum is shown in the rotating frame, with zero corresponding to the driving
frequency wd of the field. The transition frequencies from the logical subspace are
indicated by vertical dashed lines. These are ∆1 = w1 − wd = −118.88 MHz and
∆1 − α1 = −358.18 MHz in red for the left qubit, and
∆2 = w2 − wd = 115.20 MHz and ∆2 − α2 = −127.58 MHz in blue for the right
qubit. The central peak in the spectrum has been cut off to show the relevant
side-peaks, and would extend to a value of approximately 10.0. For all quantities,
the values for the guess pulse are shown as a dotted line.

Which set of states reaches the best gate error at a specific point near the
beginning of the asymptotic region seems to depend on the slope of the
convergence curve as the limit is approached. This can depend on any
number of factors including, e.g., the choice of λa in Eq. (3.61). Again,
empirically, the reduced sets of states show a significant numerical advantage
over the full basis also for weak dissipation.

As an example, the optimized pulse obtained using a set of three states
with unequal weights, taking into account the full dissipation, is presented in
Fig. 7.9, along with the pulse spectrum. The population dynamics that this
pulse induces when propagating the logical basis states ρ̂(t = 0) = |01〉〈01|
and ρ̂(t = 0) = |11〉〈11| is shown in Fig. 7.10. As can be seen in the
top panel of Fig. 7.9, the optimized pulse shows small oscillations around
the guess peak amplitude of 35 MHz. The complex phase, shown in the
middle panel, stays relatively close to zero, indicating that the optimization
employs mainly amplitude modulation. The pulse amplitude is roughly time-
symmetric. The pulse spectrum shown in the bottom panel of Fig. 7.9 relates
easily to the pulse shape. The strongest frequency component remains the
driving frequency of the guess pulse (zero in the spectrum). The small
oscillations in the pulse shape are approximately 8 ns apart, corresponding
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to a frequency of ±125 MHz, which is present in the spectrum. There are
peaks with exponentially decaying amplitude in the spectrum at multiples
of these values. The width of the central peak is due to the 20 ns switch-on
and switch-off time of the pulse, and is unchanged from the guess pulse.
The fact that there is not a single, but a double peak around ±125 MHz
corresponds the slow beats in the pulse shape. The slight asymmetry of the
spectrum is caused by the complex phase of the optimized pulse.

The spectrum of the optimized pulse is very instructive in understanding
the population dynamics in Fig. 7.10. The most relevant transition frequen-
cies from the logical subspace are indicated by vertical lines in the spectrum
in the lower panel of Fig. 7.9. Clearly, the peaks around 125 MHz are nearly
resonant with the excitation of the left and right qubit, and the excitation
to level |2〉 of the right qubit. There is no significant component in the
spectrum that could excite to the level |2〉 of the left qubit. Consequently,
in the population dynamics of both the |01〉〈01| and |11〉〈11| state, the right
qubit (top panel) leaves the logical subspace (expectation value 〈j〉 > 1.0)
to a much more significant extent than the left qubit (middle panel). This
behavior is slightly more pronounced for |11〉〈11|, which is the only state
for which the total subspace population (gray curve in bottom panel) drops
below 80% for a significant amount of time. The fact that for all logical
basis states, most of the dynamics occurs within the logical subspace is due
to the presence of decoherence, where higher levels have faster decay and
faster dephasing due to a stronger coupling to the cavity. In an optimiza-
tion without dissipation (data not shown), the optimized dynamics would
generally veer farther outside the logical subspace. Lastly, the population
dynamics show the expected behavior for the

√
iSWAP gate: the |01〉 state

ends up in a coherent superposition between |01〉 and |10〉, whereas |11〉
returns to its original state at the end of the gate.

In conclusion, we have demonstrated a significant reduction in the com-
putational resources that are required to optimize a quantum gate in the
framework of open quantum systems. This opens the door to the numerical
realization of robust quantum gates that would otherwise be unfeasible with
current numerical resources. An example where this becomes particularly
relevant is the ensemble optimization presented in chapter 4. There, we
optimized over an ensemble of 20 Liouvillians. This would ordinarily re-
quire the propagation of 320 Liouville space matrices, each of which for a
gradient-based optimization must then be stored for each point of the time
grid. Based on the results of section 7.2, these 320 propagations could be
reduced to 40. It is important to note that while we have used a Markovian
master equation to model the dissipation, the result that a reduced number
of states is sufficient for the optimization of a unitary process is independent
of the equation of motion or a specific decoherence model. Specifically,
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it also allows to explore master equations that go beyond the Markovian
regime.
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Figure 7.10: Population dynamics for ρ̂(t = 0) = |01〉〈01| (a) and
ρ̂(t = 0) = |11〉〈11| (b) under the pulse shown in Fig. 7.9. For each of the two
propagated states, the expectation value of the right qubit excitation quantum
number j is shown in the top panel, with the standard deviation in gray, the
expectation value for the corresponding quantum number i for the left qubit is
shown in the center panel, and the population dynamics for all the logical
subspace states is shown in the bottom panel (colored lines), along with the total
population in the logical subspace (black line).





8
Summary and Outlook

8.1 Summary and Conclusions
The material presented in this thesis provides a comprehensive framework for
the realization of robust two-qubit quantum gates using numerical optimal
control. It covers three aspects:

1. the use of efficient numerical tools for the modeling, simulation, and
control of both closed and open quantum systems,

2. the facilitation of robustness with respect to decoherence and clas-
sical fluctuations of system parameters through advanced control
techniques, and

3. the application of these techniques to two of the leading candidates for
the implementation of universal quantum computers, trapped atoms
and superconducting circuits.

The numerical approach to the design of quantum gates allows to go
beyond parameter regimes where the system can accurately be described by
simple, analytically solvable models. The flip side of this promise is that
the design of efficient representations, algorithms, and implementations
becomes crucial. Some of the fundamental techniques have been presented
in chapter 3. An important part of the work in this thesis has consisted
of contributing to their implementation in the QDYN Fortran 90 library.
The core aspect of the efficient storage and application of Hamiltonians,
respectively Liouvillians is to exploit their sparsity. Especially for systems
with spatial degrees of freedom, obtaining sparse operators may require the
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use of spectral and pseudo-spectral representations. For the propagation of
the time-dependent Schrödinger equation, respectively the Liouville von-
Neumann equation for open quantum systems, the most efficient method is
the expansion of the time evolution operator, respectively the dynamical map
in a fast-converging polynomial series. For an Hermitian operator, the fastest
converging expansion is in Chebychev polynomials. For a non-Hermitian
operator (especially a Liouvillian), an expansion in Newton polynomials
must be used instead. A memory efficient variation of this method involves
the use of restarted Arnoldi iterations. Both the Chebychev propagator and
the Newton propagator with restarted Arnoldi are presented in pseudocode
in appendix F. For optimal control, algorithms can be divided into gradient-
free optimization methods that are applicable to low-dimension control
problems, and gradient-based methods that provide significantly faster
convergence, but require additional numerical effort to evaluate the gradient,
and place restrictions on the types of functionals that can be optimized. The
GRAPE/LBFGS algorithm is suitable for coarse discrete parametrizations
of the control, whereas Krotov’s method guarantees monotonic convergence
for quasi-time-continuous controls. These methods, and Krotov’s method
in particular, form the basis of the results presented in this thesis.

The realization of robust quantum gates can be achieved by using ad-
vanced control techniques. A first example of such a technique is the
optimization over an ensemble of Hamiltonians to address the issue of clas-
sical fluctuations and uncertainties in the system and/or the control. In
chapter 4, this has been used to obtain quantum gates for trapped Rydberg
atoms that are robust with respect to variations of the amplitude of the
control field, and fluctuations in the Rydberg levels caused by stray elec-
tromagnetic fields. With respect to the best available analytical schemes,
robustness has been increased by more than one order of magnitude. More-
over, this level of robustness can be maintained as pulses are shortened
to approach the quantum speed limit, beyond what is achievable using
analytic pulses. Lastly, the optimized pulses successfully avoided the effects
of spontaneous decay from an intermediary level for the transition to the
Rydberg state.

Superconducting qubits provide one of the most versatile platforms
for quantum computing. They may be engineered in an almost arbitrary
range of parameters, using widely available production techniques. Recent
implementations using the transmon design are approaching decoherence
times close to 0.1 ms. This makes transmon qubits one of the most promising
contenders for quantum computing. Yet, the implementation of high fidelity
entangling gates reaching the quantum error correction limit has not been
achieved. In chapter 5, the fundamental concepts and recent advances in
the realization of two-qubit gates for transmon qubits are reviewed. We
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have shown that a holonomic phasegate can be implemented by driving the
system with an off-resonant drive near the cavity transition which induces
a Stark shift on the levels of the logical subspace. Using Krotov’s method,
we obtain optimized pulses that successfully implement a CPHASE and a
CNOT gate, as well as the holonomic phasegate. However, fidelities remain
limited by the loss of population from the logical subspace. Addressing this
loss of population in order to achieve high fidelity gates below the quantum
error correction limit, and taking into account the dominant sources of
decoherence will be the focus of future work.

Using an effective model described in chapter 5 for two transmon qubits,
a further advanced control technique that aids the realization of robust gates
has been illustrated in chapter 6: Based on the fundamental insight that
any perfect entangler together with single qubit operations is sufficient for
universal quantum computing, the application of a functional that optimizes
for an arbitrary perfect entangler has been demonstrated. Avoiding the use
of an overly specific optimization functional, such as the optimization for
a “standard” quantum gate such as CNOT or iSWAP, allows the optimal
control method to find the entangling gate that is easiest to realize. This
becomes especially relevant as constraints are added to the optimization.
The optimization functional is based on the geometric theory of two-qubit
gates, reviewed in section 2.4 of chapter 2. Any two-qubit gate can be
mapped to a point in the Weyl chamber. Gates that map to the same point
are identical up to single-qubit operations. The set of perfect entanglers
form a polyhedron inside the Weyl chamber. In earlier work [238, 193],
the optimization towards a specific point in the Weyl chamber has been
demonstrated, allowing the optimization towards a gate up to arbitrary
single-qubit operations. The results of chapter 6 have demonstrated that
an optimization towards the surface of the polyhedron of perfect entanglers
is significantly faster and reaches better fidelities than the optimization
towards a specific point in the Weyl chamber, and thus a specific two-qubit
gate. There are two aspects under which the optimization towards an
arbitrary perfect entangler benefits the implementation of gates that are
robust with respect to dissipation. First, the optimization can find the
perfect entangler that can be realized in the shortest amount of time, ideally
shorter than the relevant dissipation processes. Second, the presence of
decoherence effectively places a constraint on the system. For example,
dissipation rates increase with higher excitation numbers. Thus, in order to
minimize the effects of decoherence, it is beneficial to implement a quantum
gate with the least excitation. Optimizing for a general perfect entangler
has the potential to automatically identify the quantum gate that is least
affected by decoherence. This remains to be demonstrated in future work.

In order to allow the optimization to avoid the effects of decoherence, the
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dissipation must be explicitly included in the equations of motion. Modeling
the dynamics in Liouville space greatly exacerbates the numerical challenges.
Instead of Hilbert space vectors of dimension d, every state is now a density
matrix of dimension d2. This both significantly increases the required
storage for storing all propagated states, and the CPU time required in
propagation, as all matrix-vector operations in Hilbert space become matrix-
matrix operations in Liouville space. The optimization of a two-qubit gate
in Hilbert space requires the propagation of the four logical basis states
{|00〉 , |01〉 , |10〉 , |11〉}. A naive extension of the standard functionals to
Liouville space would require the propagation of the 16 matrices that form
the basis of the two-qubit Liouville logical subspace.

Chapter 7 has demonstrated that the propagation of the full Liouville
space basis is not necessary for the optimization of a unitary gate, but
that a reduced set of states can be employed. In general, the minimum
number of states that need to be propagated is 3. In situations where the
Hamiltonian only allows for a subset of two-qubit gates to be implemented,
this number may reduce further. For example, the Hamiltonian for two
trapped Rydberg atoms, chapter 4, only allows for diagonal gates. We have
demonstrated that in this case, propagation of only two density matrices
is sufficient to optimize for a CPHASE gate. For the general case, we
have considered again the effective model for two coupled transmon qubits.
There, optimization has been shown to be successful using three states.
However, in order to achieve an efficiency comparable to the propagation of
the full basis, the three states must be properly weighted. We have shown
that convergence can be further improved using a set of 5, respectively 8
states. In all cases, considerable savings both in memory and CPU time
have been demonstrated, addressing the issue of numerical efficiency of the
optimization of quantum gates in Liouville space.

8.2 Future Work
In order to achieve the ultimate goal of implementing a universal set of
quantum gates for superconducting qubits at high fidelity with robustness
against decoherence, several issues must yet be addressed. In a full model,
Eq. (5.18), fidelities have been limited by the loss of population from the
logical subspace caused by high cavity excitation in particular (chapter 5).
These excitations necessitate a large Hilbert space dimension d > 3000,
making optimization in the corresponding Liouville space (dimension d2)
numerically infeasible. Thus, no pulses optimized with respect to dissipation
have been obtained.

There are several approaches to improving the fidelities in this case. First,
the gradient employed in Krotov’s method has been demonstrated to become
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small when close to the optimum [146], yielding slow asymptotic convergence.
An optimization algorithm using second order information, such as LBFGS,
can be more effective in this region, allowing to return population fully
to the logical subspace. However, an even better approach is to avoid
large excitations in the first place. A state-dependent constraint [156] can
be added to the optimization functional in order to suppress high cavity
population. Alternatively, frequencies driving unwanted transitions can be
avoided in the optimized pulses using spectral constraints [158, 159]. To
avoid high excitation of the qubit levels, the DRAG technique [252, 252]
could be used, adding a second pulse that suppresses excitation out of the
logical subspace.

Eliminating large excitations allows to truncate the Hilbert space at
significantly smaller dimension, making it feasible to describe the system in
Liouville space and to take dissipative effects into account in the optimization
explicitly. Decay and dephasing rates for higher levels of the transmon qubit
have recently been obtained [253], allowing to model the dynamics as a
master equation in Lindblad form. We can apply the full range of techniques
presented in this thesis to obtain maximally robust gates. Optimization for
a general perfect entangler (chapter 6) allows to identify the gate that can
be implemented in the shortest amount of time in order to beat decoherence.
Numerical effort is kept minimal by propagating only a reduced set of
states (chapter 7). Also, one could consider using ensemble optimization
(chapter 4) to obtain further robustness against fluctuations of the system
parameters, e.g. the frequency of the transmon qubits.

An alternative possibility to reduce the dimension of the Hilbert space is
to employ an effective model that eliminates the cavity from the description
of the system. For a simplified effective model, Eq. (5.30), gates of arbitrary
fidelity in the non-dissipative case, and gate fidelities limited only by the
decoherence in the general case have been attained. However, we have found
the pulses obtained from this model not to be transferable to the full model
of Eq. (5.18). Even for the properly derived first-order effective Hamiltonian
of Eq. (5.29), agreement between the full and effective model is limited to
small pulse amplitudes [254]. In order to to obtain optimized pulses that
are exchangeable between the effective and the full model, at high fidelity,
a rigorous derivation to higher order perturbation theory is necessary. The
use of a computer algebra system may be required for this. In this way,
full correspondence between the parameters of the effective and the full
model can be obtained, and the validity of any approximations made in the
derivation ensured. The transformation yielding the effective Hamiltonian
can also be applied to the full master equation [255, 256]. Decay of the
cavity leads to an additional effective dephasing of the qubit in this case.

Specifically for the holonomic gate considered in chapter 5, a drive that
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is only slightly detuned from the cavity induces a significant Stark shift in
the cavity levels. In the non-dressed basis, this is reflected in a large cavity
excitation, see Fig 5.5. Therefore, it is not possible to simply suppress
cavity population with a state-dependent constraint. However, in principle,
an effective model can be derived through a series of transformations [257].
Most importantly, these include a Polaron transformation

D(α) = exp
(
αâ† − α∗â

)
(8.1)

that describes the displacement of the cavity by α, which is induced by
the field Ω(t). With a properly chosen value for α depending on Ω(t) the
driving term for the cavity is eliminated from the Hamiltonian in the shifted
frame [229], allowing to truncate the Hilbert space to a smaller dimension.

One of the fundamental promises of numerical optimal control is the
ability to go beyond the regime of simple analytically solvable models.
Thus, it would be possible to explore parameter regimes beyond those
of the standard Jaynes-Cummings model for the qubit-cavity interaction,
Eq. (5.18). For example, in the ultra-strong coupling regime, Eq. (5.15)
would be violated, and the interaction Hamiltonian would take the form of
Eq. (5.13). A master equation for superconducting qubits in the ultrastrong
coupling regime has been derived in Ref. [218]. It might even be feasible to
go beyond the Duffing oscillator model, Eq. (5.11), and to model the qubit
state as a wave-packet in the cosine potential of Eq. (5.7).

While with the approaches discussed above we can fully expect to obtain
high fidelity quantum gates for transmon qubits, including qubit decay
and dephasing as well as cavity decay will place limits on the achievable
fidelity, cf. chapter 7. In this case, we are limited to using optimal control
to implement quantum gates on a shorter time scale than the decoherence.
Furthermore, we can minimize – but not eliminate – the effects of decoher-
ence, e.g. by avoiding cavity population. Microscopically, decoherence in
superconducting qubits has been linked to dielectric defects as a primary
source [258, 259], which may be modeled as two-level systems. While weak
coupling leads phenomenologically to decay and dephasing and a master
equation of Lindblad form, for strong coupling the dynamics can be non-
Markovian [260, 261, 262]. That is, the conditions listed in section 2.6.4 of
chapter 2 are violated and the dynamics can no longer be treated with a
master equation in Lindblad form. Remarkably, while in the Markovian
regime, information that passes from the system to the environment through
dissipation is irretrievably lost, non-Markovian dynamics allow for a backflow
of information from the environment to the system [99, 100]. This opens up
new possibilities for control, and may in fact aid in the implementation of
quantum gates. For example, it has recently been shown that if the qubit
strongly couples to just a few of the bath spins, which in turn couple weakly
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to the rest of the environment, the non-Markovianity can be exploited for
the realization of quantum gates [243].

Numerical optimal control has previously been applied to non-Markovian
quantum systems [263, 264, 265, 266], provided the dynamics can be cal-
culated with sufficient efficiency. One possibility to tackle the simulation
of the system’s time evolution is by a renormalization approach [267]. It is
important to note that none of the techniques presented in this thesis are
limited to a specific, e.g. Markovian, dissipation model or a specific equation
of motion. They may thus be used to explore a wider range of physics that
may lead to entirely new possibilities of quantum control.





A
Interaction between an Atom and a

Laser Field

We consider an electromagnetic field with the vector and electrostatic
potential

~A(~r, t) = E0
ω
~ez sin (ky − ωt) , (A.1)

Φ(~r, t) = 0 . (A.2)

This corresponds to a cosine shape electromagnetic field propagating along
the y-axis, with the electric field oscillating in z-direction and the magnetic
field oscillating in y-direction,

~E(~r, t) = − ∂

∂t
~A(~r, t)− ~∇Φ(~r, t) = E0~ez cos(ky − ωt) , (A.3)

~B(~r, t) = ~∇× ~A(~r, t) = ∂

∂y
Az~ex = B0~ex cos(ky − ωt) , (A.4)

with B0 = E0
ω k = E0

c , where k = ω
c , c is the speed of light and ω is the laser

frequency.
The Hamiltonian for an atom’s valence electron at position ~r, with

electron mass m, electron-charge q, and ~r and ~p now being operators, reads

Ĥ = 1
2m

[
~p− q~A(~r, t)

]2
+ V̂(~r)− q

m
~S · ~B(~r, t) + ~∇Φ̂(~r, t)

= Ĥ0 −
q

m
~p · ~A− q

m
~S · ~B + q

2m
[
~A(~r, t)

]2
,

(A.5)
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with the electron’s drift Hamiltonian

Ĥ0 = ~p 2

2m + V̂(~r) , (A.6)

and the spin operator ~S coupling to the magnetic field. The origin of the
coordinate system is in the atoms nucleus. Since

∥∥∥ ~A 2
∥∥∥� ∥∥∥ ~A∥∥∥ for realistic

laser field amplitudes, we set the last term to zero.
The spatial dependence of the vector potential, ky = 2πy

λ , where y is
on the order of an atomic radius a0 and λ is the wavelength of the laser is
extremely small. We can therefore Taylor-expand the vector potential as

~A(~r, t) = E0
w
~ez sin(ky − ωt)

= E0
2iω~ez

(
eikye−iωt − e−ikyeiωt

)
≈ E0

2iω~ez
(
(1 + iky)e−iωt − (1− iky)eiωt

)
= E0

w
~ez sin(ωt) +B0y~ez cos(ωt) .

(A.7)

Also, since an electron that is localized with a Bohr radius a0 must have
a minimum momentum ~p such that ~

p ≤ a0, and ~S is on the order of ~, we
can show

∥∥∥~p · ~A∥∥∥� ∥∥∥~S · ~B∥∥∥,∥∥∥~S · ~B∥∥∥∥∥∥~p · ~A∥∥∥ ≈ ~kE0/ω

pE0/ω
= ~k

p
<
a0
λ
� 1 . (A.8)

Therefore, we are justified in approximating

~B(~r, t) ≈ B0~ex cosωt . (A.9)

Inserting this and Eq. (A.7) into Eq. (A.5) yields

Ĥ ≈ Ĥ0−
q

m

E0
ω

p̂z sin(ωt)− qB0
m

B0p̂z ŷ cos(ωt)− q

2m ŜxB0 cos(ωt) . (A.10)

Furthermore,

p̂z ŷ = 1
2
(

p̂z ŷ − ẑp̂y
)

+ 1
2
(

p̂z ŷ − ẑp̂y
)

= 1
2 L̂x + 1

2
(

p̂z ŷ − ẑp̂y
)
, (A.11)

resulting in

Ĥ ≈ Ĥ0 −
q

m

E0
ω

p̂z sin(ωt)− q

2mcE0 cos(ωt)
[
p̂z ŷ − ẑp̂y

]
+

− q

2m
(

L̂x + Ŝx
)
B0 cos(ωt) .

(A.12)
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The three interaction terms are interpreted as follows:

•
ĤED = q

m

E0
w

p̂z sin(ωt) (A.13)

is the electric dipole interaction in momentum space. It can be
rewritten to its more familiar form in coordinate space

ĤED = qẑE0 cos(ωt) = µ̂E0 cos(ωt) , (A.14)

where µ̂ has been introduced as the dipole operator.
•

ĤEQ = − q

2mcE0 cos(ωt)
[
p̂z ŷ − ẑp̂y

]
(A.15)

describes the electric quadrupole interaction.
•

ĤMD = − q

2m
(

L̂x + Ŝx
)
B0 cos(ωt) (A.16)

describes the magnetic dipole interaction.

Both the electric quadrupole and the magnetic dipole are negligible compared
to the electric dipole. Therefore, in the dipole-approximation the total
Hamiltonian becomes

Ĥ ≈ Ĥ0 + µ̂E(t) . (A.17)

The dipole approximation results from the assumption that the wavelength
of the laser is much larger than the width of the atom, and thus that
the spatial dependence of the field can be dropped, allowing to define the
z-component of the electric field as

E(t) = E0 cos(ωt) . (A.18)

When Eq. (A.17) is written in the energy representation given by the
eigenstates of Ĥ0, the selection rules for the dipole transitions are obtained.
That is, for certain quantum numbers the corresponding matrix element of
µ̂ will vanish. For a Hydrogen atom with eigenstates |nlm〉, the dipole is
zero unless ∆l = 1 and ∆m = 0, 1.

For example, we may consider a Hamiltonian for a sub-system consisting
of three levels |0〉, |1〉, and |2〉, with energies E0, E1, E2. The dipole transi-
tion |0〉 → |1〉 and |2〉 → |3〉 is allowed with a resulting dipole moment of
µ01 = 〈0 | µ̂ | 1〉 and µ12 = 〈1 | µ̂ | 2〉, respectively, but |1〉 → |3〉 is forbidden.
This Hamiltonian would we written in the energy representation as

Ĥ =

 E0 µ01E(t) 0
µ01E(t) E1 µ12E(t)

0 µ12E(t) E2

 , (A.19)

the form used for the Hamiltonians e.g. in chapters 4 and 7.





B
The Rotating Wave Approximation

In many cases, we can simplify the Hamiltonian and make it analytically
tractable by transforming it from the lab frame to the rotating frame
oscillating at the laser frequency ωL. The rotating frame is defined by a
time-dependent unitary transformation Û(t). Every state |Ψ〉 in the lab
frame is transformed to the corresponding state in the rotating frame as

|Ψ̃(t)〉 = Û(t)|Ψ(t)〉 (B.1)

In order to derive the Hamiltonian in the rotating frame, we demand the
Schrödinger equation to be fulfilled,

i~ ∂
∂t
|Ψ̃〉 = H̃|Ψ̃〉 , (B.2)

which leads to

i~ ∂
∂t
|Ψ̃〉 = i~U̇|Ψ〉+ Ûi~ ∂

∂t
|Ψ〉

= i~U̇|Ψ〉+ ÛĤ|Ψ〉
= i~U̇Û†|Ψ̃〉+ ÛĤÛ†|Ψ̃〉
=
(
i~U̇Û† + ÛĤÛ†

)
|Ψ̃〉.

(B.3)

So, the transformed Hamiltonian is

H̃ = i~U̇Û† + ÛĤÛ†. (B.4)
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For a system of two dipole-coupled levels separated by energy ~ω1, driven
by a pulse ε(t), the Hamiltonian reads

Ĥ =
(

0 µε(t)
µε(t) ~ω1

)
, (B.5)

where µ is the dipole strength. We consider the pulse

ε(t) = S(t) cos(ωLt) = S(t)
2
(
eiωLt + e−iωLt

)
, (B.6)

with frequency ωL and a slowly varying shape S(t). The rotating frame for
this pulse is defined by

Û(t) =
(

1 0
0 eiωLt

)
. (B.7)

Applying Eq. (B.4) yields

H̃ =
(

0 µε(t)e−iωLt

µε(t)e+iωLt ~(ω1 − ωL)

)
. (B.8)

The energy level has been shifted down by ωL, resulting from the term
i~U̇Û†, and the couplings obtain a time-dependent phase-factor, due to
the term ÛĤÛ†. Up to this point, the transformation is exact. For the
off-diagonal terms, we now find

µε(t)e±iωLt = µ

2 ε(t)
(
1 + e±2iωLt

)
≈ µ

2S(t) ≡ Ω(t) . (B.9)

The approximation is valid for ωL � 1, where the fast oscillations at twice
the laser frequency average out, leaving only the slowly varying pulse shape.
With the detuning ∆ ≡ ~(ω1 − ωL), the RWA-Hamiltonian is therefore

ĤRWA =
(

0 Ω(t)
Ω(t) ∆

)
. (B.10)

In chapter 4, a cesium atom was considered where the ground state
|0〉 is excited to the Rydberg state |r〉 by a two-photon transition via the
intermediary level |i〉, see Fig. 4.2. In the lab frame, the Hamiltonian reads

Ĥ =

 0 µBεB(t) 0
µBεB(t) ~ωi µRεR(t)

0 µRεR(t) ~ωr

 , (B.11)

with the red and blue laser field

εR,B(t) = SR,B(t) cos(ωR,Bt). (B.12)
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The appropriate two-color RWA is defined by

Û =

1 0 0
0 eiωBt 0
0 0 ei(ωB+ωR)t

 . (B.13)

The transformed Hamiltonian (with µR,B absorbed in εR,B) is

H̃ =

 0 εB(t)e−iωBt 0
εB(t)eiωBt ~(ωi − ωR) εR(t)e−i(ωR+ωB)t+iωBt

0 εR(t)ei(ωR+ωB)t−iωBt ~(ωr − ωR − ωB)


≈

 0 ΩB(t) 0
ΩB(t) ∆1 ΩR(t)

0 ΩR(t) ∆2

 ,

(B.14)

with
ΩR,B(t) = 1

2µR,BSR,B(t) (B.15)

and the single- and two-photon detuning ∆1 and ∆2, respectively. This
corresponds to Eq. (4.1).

In general, the appropriate RWA-transformation Û can be read off from
a level diagram; Û is always diagonal with entries eiωit, where ωi is the
amount by which the i’th energy level is shifted down. The shifts result
from shortening each transition by the pulse frequency that is to be elimi-
nated [189]. For example, starting from the diagram in Fig 4.2, shortening
the blue transition means that both |i〉 and |r〉 are shifted down by ωB.
Then, shortening the red transition means that |r〉 is shifted down by an
additional amount ωR, resulting in Eq. (B.13).





C
Rabi-Cycling in the
Two-Level System

We consider a two-level system

|Ψ(t)〉 = a(t) |0〉+ b(t) |1〉 (C.1)

with time-dependent complex coefficients a(t) and b(t). Under the rotating
wave approximation presented in appendix B, the Hamiltonian takes the
form

Ĥ =
(

0 1
2Ω0(t)

1
2Ω0(t) ∆

)
. (C.2)

where Ω0(t) is a slowly varying pulse shape and ∆ is the detuning of the
central pulse frequency from the |0〉 → |1〉 transition. We first consider a
pulse that is a simple continuous oscillation i.e. a constant Ω0(t) ≡ Ω0 in
the RWA.

For the initial conditions a(0) = 1 and b(0) = 0, the Schrödinger equation
then has the solution [9]

a(t) = e−
i
2 ∆t

(
cos

(Ωt
2

)
− i∆Ω sin

(Ωt
2

))
, (C.3a)

b(t) = −iΩ0
Ω e−

i
2 ∆t sin

(Ωt
2

)
, (C.3b)

with
Ω =

√
∆2 + Ω2

0 . (C.4)
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The population undergoes Rabi oscillations between |0〉 and |1〉 with a
period of 2π

Ω ,

|a(t)|2 =
(∆

Ω

)2
+
(Ω0

Ω

)2
cos2

(Ωt
2

)
, (C.5a)

|b(t)|2 =
(Ω0

Ω

)2
sin2

(Ωt
2

)
. (C.5b)

In the case of non-zero detuning, ∆ 6= 0, the population is only transferred
partially, but at higher frequency. In the resonant case, ∆ = 0, the Rabi-
frequency is Ω = Ω0, and there is complete population transfer at t = π

Ω .
The complete coherent transfer of population from |0〉 to |1〉 is therefore
called a “π-pulse”. However, according to Eq. (C.3), it also induces a phase
factor of eiπ2 ,

π-pulse: |0〉 → i |1〉 .
Transferring the population up and down again in a full Rabi cycle, or
2π-pulse, yields a phase factor −1,

2π-pulse: |0〉 → − |0〉 .

In order to restore the original state with a phase of zero, two full cycles
are necessary.

For a time-dependent but slowly varying pulse shape Ω(t), the Rabi
angle Ωt in the argument of the sines and cosines in Eq. (C.3) and Eq. (C.5)
generalizes to

Ωt→
∫ t

0
Ω(t′)dt′ .

Thus, the amount of population that is transferred depends only on the
pulse area, not the specific shape of the pulse.



D
Overview of Two-Qubit Gates

The CNOT gate is the archetypal two-qubit gate in sets of operations for
universal quantum computing; it flips the target qubit if the control qubit
is in state |1〉.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (D.1)

The CPHASE gate induces a phase shift of γ on the target qubit if the
control qubit is in state |1〉.

CPHASEγ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiγ

 (D.2)

The gate is a perfect entangler for γ = π, where it is locally equivalent to
CNOT. Indeed, all controlled operators are locally equivalent to a CPHASEγ
[91]. We refer to CPHASEπ simply as CPHASE. In the Weyl chamber, the
CPHASEγ gates are on the line O–A1.

The SWAP gate exchanges the two qubits. The gates at the A3 point
in the Weyl chamber are the only true two-qubit gates that yield zero
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entanglement.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (D.3)

The
√
SWAP, located at the point P in the Weyl chamber, however, is

a perfect entangler, indicating that a SWAP gate is implemented by first
entangling and then disentangling the two qubits.

√
SWAP =


1 0 0 0
0 1

2 − i
2

1
2 + i

2 0
0 1

2 + i
2

1
2 − i

2 0
0 0 0 1

 (D.4)

A secondary square root of SWAP is located at the N point; it is simply
the complex conjugate of the principal square root, Eq. (D.4), and we thus
label is as

√
SWAP∗.

The iSWAP gate performs a SWAP, with and additional relative phase
shift of π. The gate is also known as DCNOT (Double-CNOT), since is
implemented by two consecutive CNOT gates, where the control qubit for
the second CNOT is the target qubit of the first CNOT.

iSWAP = DCNOT =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 (D.5)

The principal square root of iSWAP is located at the Q point in the
Weyl chamber.

√
iSWAP =


1 0 0 0
0 1√

2
i√
2 0

0 i√
2

1√
2 0

0 0 0 1

 (D.6)

Note that none of the gates at the M point are square roots of the exact
iSWAP, even though their square is still locally equivalent to iSWAP.

The B-GATE is at the center of the perfect entanglers. It has been
shown to be extremely efficient for the construction of arbitrary two-qubit
gates [89].

B-GATE =


cos π8 0 0 i sin π

8
0 cos 3π

8 i sin 3π
8 0

0 i sin 3π
8 cos 3π

8 0
i sin π

8 0 0 cos π8

 (D.7)
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c1/π

0.0
0.2

0.4
0.6

0.8
1.0

c2/
π

0.0
0.1

0.2
0.3

0.4
0.5

c 3
/
π

0.0

0.1

0.2

0.3

0.4

0.5

Q

P

B

A3

A2

A1

M
L

O

N

Gate Hamiltonian c1 c2 c3 W g1 g2 g3

1 (single qubit gates) 0 0 0 O 1 0 3
π 0 0 A1 1 0 3

CNOT σ̂(1)
z + σ̂(2)

x − σ̂zσ̂x π
2 0 0 L 0 0 1

CPHASEγ σ̂(1)
z + σ̂(2)

z − σ̂zσ̂z γ
2 0 0 g1(γ) 0 g3(γ)

iSWAP
DCNOT

σ̂xσ̂x + σ̂yσ̂y
= 1

2 (σ̂+σ̂− + σ̂−σ̂+)
π
2

π
2 0 A2 0 0 −1

√
iSWAP σ̂xσ̂x + σ̂yσ̂y

π
4

π
4 0 Q 1

4 0 1

SWAP σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z
π
2

π
2

π
2 A3 −1 0 −3

√
SWAP σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z

π
4

π
4

π
4 P 0 1

4 0

√
SWAP∗ −σ̂xσ̂x−σ̂yσ̂y−σ̂zσ̂z 3π

4
π
4

π
4 N 0 −1

4 0

B-GATE 2σ̂xσ̂x + σ̂yσ̂y
π
2

π
4 0 B 0 0 0

M-GATE 3σ̂xσ̂x + σ̂yσ̂y
3π
4

π
4 0 M 1

4 0 1

Table D.1: Summary of two-qubit gates at special points in the Weyl chamber
(shown at the top, with the polyhedron of perfect entanglers indicated by the
shaded area). For each gate, the Hamiltonian generating that gate up to a global
phase is given in terms of the Pauli matrices, where σ̂(1,2)

i indicates an operator
acting only on the first and second qubit, respectively, and σ̂iσ̂j is a shorthand for
σ̂

(1)
i ⊗ σ̂

(2)
j . Also, the Weyl coordinates c1, c2, c3, the name of the respective point

in the Weyl chamber, and the local invariants g1, g2, g3 are listed. The Weyl
chamber coordinates for the controlled phase gate are g1(γ) = cos2 γ

2 and
g3(γ) = 1 + 2 cos2 γ

2 .





E
Applications of the

Fast-Fourier-Transform

The Fast-Fourier-Transform [268] is a versatile numerical tool. It is an
efficient implementation of the discrete Fourier transform that maps between
a function in a canonical variable and a function in the conjugate variable,
e.g. space (x) and wavenumber (k, equal to momentum with ~ = 1), or time
(t) and angular frequency (ω). For these two examples, the discrete Fourier
transform F of a function f reads as

F (ωj) =
N−1∑
n=0

f(tn)e−i 2πjn
N ≈

N−1∑
n=0

f(tn)e−iωjtn , (E.1)

F (kj) =
N−1∑
n=0

f(xn)e−i 2πjn
N ≈

N−1∑
n=0

f(xn)e−ikjxn , (E.2)

where N is the sampling size, and using the correspondence

wjtn ≈
2πjn
N

, kjxn ≈
2πjn
N

. (E.3)

This transformation is widely implemented in numerical libraries as
F (ωj) ≡ FFT f(tn) with the inverse transform defined by

f(tn) = 1
N

FFT−1 F (ωj) = 1
N

FFT−1 FFT f(tn) . (E.4)

The FFT scales as N logN with the sampling size [269].
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E.1 The Frequency Grid

When using the output of the FFT routine, e.g. as the spectrum of a time-
dependent signal f(tn), it is important to understand exactly which angular
frequency values ωj the resulting amplitudes F (ωj) correspond to. This
differs between odd and even N , a detail that is often neglected and can
lead to subtle errors in numerical calculations.

If the original signal is of duration T = tN−1−t0, and has a sampling rate
dt = T

N−1 , the result of a call to the FFT routine is an array of N complex
numbers, containing the amplitudes for angular frequencies between −ωmax
and +ωmax, with

ωmax =
{
π
dt = (N−1)π

T if N even
N−1
N

π
dt = N−1

N
(N−1)π

T if N odd
(E.5)

The layout of the frequency array also depends on whether N is odd
or even. In any case, the frequency array consists of two parts: the first
sub-array of length l contains the amplitudes of the positive frequencies,
the remaining sub-array of length N − l (running from l+ 1 to N) contains
the amplitudes for the negative frequencies.
• N even.

For even N , there are l = N/2 positive frequencies, and the values
correspond to

0, dω, . . . , ωmax − dω,
followed by

−ωmax,−ωmax + dω, . . . ,−dω.
• N odd.

For odd N , there are l = N/2 + 1 positive frequencies, and the values
correspond to

0, dω, . . . , ωmax,

followed by
−ωmax,−ωmax + dω, . . . ,−dω.

The spectral resolution is

dω =
{2ωmax

N = 2π
T − 2π

NT if N even
2ωmax
N−1 = 2π

T if N odd
. (E.6)

With tn = n TN and ωj = j dω, Eq. (E.3) is recovered. If f(t) ∈ R, then
F (ω) = F (−ω)∗. For complex signals, on the other hand, the positive and
the negative part of the spectrum are not equivalent.
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E.2 Derivatives and the Kinetic Operator
The FFT can be used to calculate the derivative of a signal f(x) evenly
sampled at N points.

∂

∂x
≡ 1
N

FFT−1 (ik) FFT (E.7)

The kinetic operator in one Cartesian dimension is

T̂ = p̂2

2m = − ~
2m

∂2

∂x2 . (E.8)

Using the FFT, this becomes

T̂ = − ~2

2m
1
N

FFT−1 ik FFT 1
N

FFT−1 ik FFT

= ~2

2m
1
N

FFT−1 k2 FFT .

(E.9)

E.3 Cosine-Transform and Chebychev Coefficients
For f(x) = ex, the Chebychev coefficients can be derived analytically to
be proportional to the Bessel functions, see section 3.2.1 in chapter 3. For
a general function, however, the coefficients are calculated via a cosine
transform [129]. Since the Chebychev polynomials Pn are defined only in
the interval [−1, 1], the function f(x) must be rescaled as f(x) = f̃(ξ) with
ξ ∈ [−1, 1]. The coefficients are then calculated as

an = 2− δn,0
π

∫ +1

−1

f̃(ξ)Pn(ξ)√
1− ξ2 dξ ≈ 2− δn,0

π

N−1∑
k=0

wkfk cos (nθk) , (E.10)

with fk ≡ f(xk) = f̃(ξk), θk ≡ arccos(ξk), and weights wk that depend on
the choice of the sampling points xk. The approximation becomes exact for
N →∞. There are two possible choices of sampling points:

• Gauss-Lobatto-Chebychev grid (“closed interpolation”: ξk ∈ [1,−1])

ξk = cos
(

kπ

N − 1

)
, wk =

(1
2

)δn,0 (1
2

)δn,N−1 π

N − 1 . (E.11)

The ξk are the extrema of the Chebychev polynomials, plus endpoints.
The resulting formula for the coefficients an is defined as a discrete
cosine transform of type I (DCT I) and may be implemented via the
FFT [270]. The complete calculation of the coefficients is shown in
Algorithm 1.
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• Gauss-Chebychev (“open interpolation”: ξk ∈ (1,−1))

ξk = cos


(
k + 1

2

)
π

N

 , wk = π

N
. (E.12)

The ξk are the roots of the Chebychev polynomials. The resulting
formula for the an is defined as a discrete cosine transform of type II
(DCT II). There is no direct mapping to the FFT in this case.

Algorithm 1 ChebychevCoefficients for expansion of f(x).

Input: f(x) with x ∈ [xmin, xmax]; maximum number nmax of coeffi-
cients

Output: Array of Chebychev coefficients [a0 . . . an], n < nmax allowing
to approximate f(x) to predefined precision.

1: procedure ChebyCoeffs(f(x))
2: ∆ = xmax − xmin
3: α = 1

2∆; β = α + xmin
4: F0:2nmax−3 = 0 . allocation to size 2(nmax − 1)
5: for k = 0 : nmax − 1 do
6: ξk = cos

(
kπ

nmax−1

)
. ξk = +1, . . . ,−1

7: Fk = f(αξk + β)
8: end for
9: for k = 1 : nmax − 2 do . mirror, without endpoints
10: Fnmax−1+k = Fnmax−1−k
11: end for
12: F = FFT(F )
13: F = F/(nmax − 1)
14: F0 = 1

2F0
15: Fnmax−1 = 1

2Fnmax−1
16: for i = 0 : nmax − 1 do
17: ai = Fi
18: if |ai| < limit then exit loop with n = i
19: end for
20: return [a0, . . . an]
21: end procedure



F
Propagation Algorithms

F.1 Chebychev Propagator

For the evaluation of the time evolution operator f(±Â dt) = e±iÂ dt, the
Chebychev propagation [114, 129] is implemented by Algorithm 2. The
operator Â may be a Hamiltonian, in which case the state vectors ~v are
Hilbert space states, or Â may be a Liouvillian with no dissipators, in which
case ~v is a density matrix.

A re-calculation of the Chebychev coefficients in line 4 is necessary
only if the spectral radius ∆ and minimum eigenvalue Emin have changed,
otherwise, the coefficients from a previous calculation can be re-used. For a
more general function f(Â), instead of ExpChebyCoeffs, the routine
ChebyCoeffs defined in Algorithm 1 may be used, together with an
appropriate pre-factor in lines 8 and 11. The coefficients [a0 . . . an] are the
same for both a forward and a backward propagation. They are real for the
exponential function, but may be complex for an arbitrary f(Â).
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186 F. Propagation Algorithms

Algorithm 2 Chebychev-Propagator Evaluate ~w = f(±Â dt)~v,
with f(±Â dt) = e±iÂ dt.

Input: input vector ~v ∈ CN ; operator Â ∈ CN×N ; time step dt;
Output: Approximation of propagated vector ~w = e−iÂ dt~v ∈ CN

1: procedure Cheby(~v, Â, dt)
2: ∆ = spectral radius of Â
3: Emin = minimum eigenvalue of Â
4: [a0 . . . an] = ExpChebyCoeffs(∆, Emin, dt)
5: d = 1

2∆; β = d+ Emin
6: ~v0 = ~v
7: ~w(0) = a0~v0
8: ~v1 = ± i

d

(
Â~v0 − β~v0

)
9: ~w(1) = ~w(0) + a1~v1
10: for i = 2 : n do
11: ~vi = ±2i

d

(
Â~vi−1 − β~vi−1

)
+ ~vi−2

12: ~w(i) = ~w(i−1) + ai~vi
13: end for
14: return e±iβ dt ~w(n)

15: end procedure

Algorithm 3 ChebychevCoefficients for f(±Â dt) = e±iÂ dt.

Input: spectral radius ∆ of Â; minimum eigenvalue Emin of Â; time
step dt

Output: Array of Chebychev coefficients [a0 . . . an] allowing to ap-
proximate f(Â dt) to pre-defined precision.

1: procedure ExpChebyCoeffs(∆, Emin, dt)
2: α = 1

2∆ dt
3: a0 = J0(α) . 0’th order Bessel-function of first kind
4: for i = 1 : nmax ≈ 4bαc do
5: ai = 2Ji(α) . i’th order Bessel-function of first kind
6: if |ai| < limit then exit loop with n = i
7: end for
8: return [a0, . . . an]
9: end procedure
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F.2 Newton Propagator with Restarted Arnoldi

For the evaluation of the time evolution operator f(±Â dt) = e±iÂ dt, where
Â has complex eigenvalues, the Newton algorithm using a restarted Arnoldi
scheme [136] can be used, as discussed in section 3.2.2 of chapter 3. The
operator Â is typically a dissipative Liouvillian, but may also be a Hamilto-
nian with non-Hermitian terms. The propagation scheme is implemented
by algorithm 4, using the Arnoldi algorithm 5 as a central component.

The algorithm proceeds in iterations, with each iteration adding m

new terms to the Newton expansion of the propagator. In each iteration,
starting from a vector ~vs, the Arnoldi algorithm is performed to obtain the
Arnoldi vectors spanning the m-dimensional Krylov subspace, as well as
the Hessenberg matrix Ĥ, i.e. the projection of Â into the Krylov space.
From the eigenvalues of Ĥ (the “Ritz values”), new sampling points for the
Newton polynomials are chosen, in Leja ordering to maximize numerical
stability, using algorithm 6. Then, new Newton coefficients are calculated
using algorithm 7. Lastly, the coefficients and Leja points are used to
calculate the contribution to the propagation result, and the starting vector
for the next iteration.

Moreover:

• The check in line 10 catches if ~vs is an eigenstate of Â.
• For the normalization in line 13, the normalization radius ρ and

center c should be calculated in the first iteration and the re-used
in subsequent iterations. For the set of Leja points Z0 = [z0 : zm−1],
they are calculated as

c = 1
m

m−1∑
j=0

zj , ρ = Πm−1
j=0 |c− zj |

1
m . (F.1)

• The call to ExtendLeja in line 15 adds Leja points zns . . . zns+m−1.
• The call to ExtendNewtonCoeffs in line 16 adds the coefficients
ans . . . ans+m−1

• The loop ending in line 22 implements the formula

~rm−1 = Πk
j=1(Ĥ − zns+j−11)~e1 , (F.2)

~pm−1 =
m−1∑
k=0

ans+k ~rk . (F.3)
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Algorithm 4 RestartedNewton: Evaluate ~w = f(±Â dt)~v, with
f(±Â dt) = e±iÂ dt.

Input: input vector ~v ∈ CN ; operator Â ∈ CN×N ; time step dt;
maximum size m of Hessenberg matrices

Output: Approximation of propagated vector ~w = e±iÂ dt~v ∈ CN

1: procedure RestartedNewton(~v, Â, dt, m)
2: A0 = ∅; Z0 = ∅ . A, Z use zero-based indexing
3: ~w(0) = ~0 ∈ CN

4: ~v0 = ~v ∈ CN

5: β = ‖~v0‖
6: ~v0 = ~v0/β
7: s = 0
8: while not converged do . Iteration s→ s+ 1
9: U , Ĥ, Z, m = Arnoldi(Â, dt, ~vs, m)
10: if m = 0, s = 0 then
11: return e±iβH1,1~vs
12: end if
13: Normalize Z with center c and radius ρ
14: ns = |Zs|
15: Zs+1 = ExtendLeja(Zs, Z,m)
16: As+1 = ExtendNewtonCoeffs(As, Zs+1, ρ, c)
17: ~r0 = β~e1 ∈ Cm+1 . ~e1 is unit vector
18: ~p0 = ans~r0
19: for k=1:m-1 do
20: ~rk = (1

ρ
Ĥ − (zns+k−1) + c

ρ
)~rk−1

21: ~pk = ~pk−1 + ans+k~rk
22: end for
23: w

(s)
+ = ∑m

i=1 [~pm−1]i ~ui . ~ui ∈ U
24: ~w(s+1) = ~w(s) + ~w

(s)
+

25: ~rm =
(

1
ρ
Ĥ −

(
zns+m−1 + c

ρ

)
1

)
~rm−1

26: β = ‖~rm‖
27: ~rm = ~rm/β
28: ~vs+1 = ∑m+1

i=1 [~rm]i ~ui . ~ui ∈ U
29: s = s+ 1
30: converged if ‖~w

s
+‖

‖~ws‖ < limit
31: end while
32: return ~w(s)

33: end procedure



F.2. Newton Propagator with Restarted Arnoldi 189

Algorithm 5 Arnoldi: Obtain the m×m Hessenberg matrix for
an operator Âdt by projecting it into the Krylov space starting from a
vector ~v.

Input: Operator Â, Time step dt; input vector ~v; maximum order
mmax

Output: Array of m+ 1 (extended) Arnoldi vectors, each of the same
dimension as ~v; Extended (m+ 1)× (m+ 1) Hessenberg matrix Ĥ;
Accumulated Ritz values Z; Dimension m of Hessenberg matrix

1: procedure Arnoldi(Â, dt, ~v, mmax)
2: β = ‖~v‖; ~u1 = ~v/β; U = [~u1]; Z = ∅; m = mmax
3: Ĥ1:(m+1),1:(m+1) = 0
4: for j = 1 : mmax do
5: ~uj+1 = Â~uj
6: for i = 1 : j do
7: Hi,j = dt 〈~ui | ~uj+1〉
8: ~uj+1 = ~uj+1 − Hi,j

dt
~ui

9: end for
10: Z = Z ∪ eigenvalues(Ĥ1:j,1:j)
11: hnext = |~uj+1|
12: if hnext ≈ 0: m = j, exit loop
13: ~uj+1 = ~uj+1/hnext
14: U = U ∪ ~uj+1
15: Hj+1,j = hnext dt
16: end for
17: return U = [~u1 : ~um+1], Ĥ1:(m+1),1:(m+1), Z, m
18: end procedure

Notes:

• At the end of the loop in line 9, Ĥ is complete as a j × j matrix.
The loop itself is a Gram-Schmidt orthonormalization of the Arnoldi
vectors ~uj .

• The eigenvalues of the Hessenberg matrix in line 10 can be obtained
with the QR method, implemented in LAPACK as ZHSEQR.
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Algorithm 6 ExtendLeja: Choose m new points from a set of
Ritz values to extend an existing array of Leja points

Input: Array Zs of ns existing Leja points; Array Z of new candidate
points (Ritz values); Number m of points to pick from Z.

Output: Array Zs+1 of ns +m Leja-ordered points

1: procedure ExtendLeja(Zs, Z,m)
2: n0 = 1; Zs+1 = Zs
3: if Zs = ∅ then
4: z = max(abs(Z))
5: Zs+1 = Zs1 ∪ z; remove z from Z
6: n0 = 2
7: end if
8: for n = n0 : m do
9: Select zi ∈ Z that maximizes Πzj∈Zs+1 |zi − zj|
10: Zs+1 = Zs+1 ∪ zi; remove zi from Z
11: end for
12: return Zs+1
13: end procedure
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Algorithm 7 ExtendNewtonCoeffs: Choose m new points
from a set of Ritz values to extend an existing array of Leja points

Input: Array As = [a0 . . . ans−1] of ns Newton coefficients from previ-
ous iteration; Array Zs+1 = [z0 . . . zns−1+m] of Leja points; Normal-
ization radius ρ; Normalization center c

Output: Array As+1 = [a0 . . . . . . ans−1+m] of ns + m Newton coeffi-
cients

1: procedure ExtendNewtonCoeffs(As, Zs+1, ρ, c)
2: As+1 = As; n0 = ns = |As|, m = |Zs+1| − ns;
3: Define f(z) = e±i(ρz+c)

4: if ns = 0 then
5: a0 = f(z0)
6: As+1 = As+1 ∪ a0
7: n0 = 1
8: end if
9: for k = n0 : ns − 1 +m do
10: ak = f(zk)−a0−

∑k−1
n=1 anΠn−1

j=0 (zk−zj)
Πk−1
j=0 (zk−zj)

11: As+1 = As+1 ∪ ak
12: end for
13: return As+1
14: end procedure





G
Krotov Boundary Condition for the

Perfect Entangler Functional

We derive the boundary condition∣∣∣χ(i)(T )
〉

= − ∂JT
∂ 〈φk|

∣∣∣∣
φ

(i)
k

(T )
, (G.1)

cf. Eq. (3.56), for the backwards-propagation of the co-state |χ(t)〉 in the
update equation (3.62) of Krotov’s method, for the perfect-entanglers func-
tional

JPE = g3

√
g2

1 + g2
2 − g1 , (G.2)

cf. Eq. (6.12).

The forward propagation of the four Bell states

|φ1〉 = 1√
2

(|00〉 − i|11〉) , |φ2〉 = − 1√
2

(i|01〉 − |10〉) , (G.3)

|φ3〉 = − 1√
2

(i|01〉+ |10〉) , |φ4〉 = 1√
2

(|00〉+ i|11〉) . (G.4)

in the two-qubit logical subspace yields a gate UB, as a 4× 4 matrix. We
split this matrix into real and imaginary part

A ≡ Re[UB], B ≡ Im[UB] . (G.5)
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The co-state at final time T can then be written as

|χ(T )〉 =
4∑
l=1

a∗lk |φl(T )〉 , (G.6)

with
akl = −

(
∂FPE
∂Akl

+ i∂FPE
∂Bkl

)
. (G.7)

We can rewrite

√
g2

1 + g2
2 =

√√√√(Re
tr2[m]

16 detUB

)2

+
(
Im

tr2[m]
16 detUB

)2

= 1
16
(
Re2 [tr[m]] + Im2 [tr[m]]

)
,

(G.8)

with m ≡ UTBUB, and having used
∣∣tr2[m]

∣∣ = |tr[m]|2.

With Eq.(G.8), and

g3 = tr2[m]− tr[m2]
4 detUB

, (G.9)

the perfect-entanglers functional can be rewritten as

FPE =
( 1

detUB

)(1
4(tr2[m]− tr[m2])

)( 1
16Re2[tr[m]]

)
+

+
( 2

detUB

)(1
4(tr2[m]− tr[m2])

)( 1
16Im

2[tr[m]]
)( 1

16Re[tr2[m]]
)
.

(G.10)

The derivatives in Eq. (G.7) can now be evaluated via the chain rule, where
the derivatives of the individual terms are

∂

∂Aab

( 1
det[UB]

)
= −det[U (ab)′

B ]
det2[UB]

, (G.11)

∂

∂Bab

( 1
det[UB]

)
= −idet[U (ab)′

B ]
det2[UB]

, (G.12)

where U (ab)′
B is obtained from UB by replacing the a’th column by the b’th



195

unit vector, following Leibniz’ formula, cf. Ref [238]; furthermore,

∂

∂Aab

(1
4(tr2[m]− tr[m2])

)

=
∑
ki

((
AabAkiAki −AabBkiBki − 2BabAkiBki

−AkiAaiAkb +AkbBaiBki + 2BkbAaiBki
)
+

+ i
(
BabAkiAki −BabBkiBki + 2AabAkiBki −AaiAkiBkb

−AkbAkiBai −AkbAaiBki +BaiBkiBkb
))

,

(G.13)

∂

∂Bab

(1
4(tr2[m]− tr[m2])

)

=
∑
ki

((
BabBkiBki −BabAkiAki − 2AabAkiBki

−BkiBaiBkb +BkbAaiAki + 2AkbBaiAki
)
+

+ i
(
−AabBkiBki +AabAkiAki − 2BabBkiAki +BaiBkiAkb

+BkbBkiAai +BkbBaiAki −AaiAkiAkb
))

,

(G.14)

∂

∂Aab

( 1
16Re2[tr[m]]

)
= 1

4
∑
ki

(AabAkiAki −AabBkiBki) , (G.15)

∂

∂Bab

( 1
16Re2[tr[m]]

)
= 1

4
∑
ki

(BabBkiBki −BabAkiAki) , (G.16)

∂

∂Aab

( 1
16Im

2[tr[m]]
)

= 1
2
∑
ki

(AkiBabBki) , (G.17)

∂

∂Bab

( 1
16Im

2[tr[m]]
)

= 1
2
∑
ki

(BkiAabAki) , (G.18)

∂

∂Aab

( 1
16Re[tr2[m]]

)

= 1
4
∑
ki

((
AabAkiAki −AabBkiBki − 2BabAkiBki

)
+

+ i
(

+BabAkiAki −BabBkiBki + 2AabAkiBki
))

,

(G.19)
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and finally

∂

∂Bab

( 1
16Re[tr2[m]]

)

= 1
4
∑
ki

((
BabBkiBki −BabAkiAki − 2AabBkiAki

)
+

+ i
(
−AabBkiBki +AabAkiAki − 2BabBkiAki

))
.

(G.20)



H
Optimization Functional for a

Holonomic Phasegate

We formulate a functional for the holonomic phasegate of chapter 5, i.e. an
arbitrary diagonal perfect entangler. The functional can be expressed both
in Hilbert space or Liouville space. We derive the boundary condition for
the backward propagation in Krotov’s method, Eq. (3.56).

H.1 Hilbert Space Functional
The functional is split in two parts, corresponding to the two requirements
that the gate must be diagonal, and that it should be a perfect entangler,

JT = Jss + wγJγ . (H.1)

The two terms may be weighted with wγ .
The first part of the functional states that every logical eigenstate should

be mapped onto itself, irrespective of any phase.

Jss = 4−
∣∣∣〈00

∣∣∣ Û ∣∣∣ 00
〉∣∣∣2 − ∣∣∣〈01

∣∣∣ Û ∣∣∣ 01
〉∣∣∣2 +

−
∣∣∣〈10

∣∣∣ Û ∣∣∣ 10
〉∣∣∣2 − ∣∣∣〈11

∣∣∣ Û ∣∣∣ 11
〉∣∣∣2 (H.2)

Jss takes values in [0, 4] and optimizes for an arbitrary diagonal gate.
The second requirement of having a perfect entangler is fulfilled if the non-

local phase, cf. Eq. (2.30) reaches a value of π, γ = φ00−φ10−φ01 +φ11 = π
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where φ00 is the phase obtained by the state |00〉 and equivalently for the
other states of the logical basis.

We find〈
00
∣∣∣ Û ∣∣∣ 00

〉〈
01
∣∣∣ Û† ∣∣∣ 01

〉〈
10
∣∣∣ Û† ∣∣∣ 10

〉〈
11
∣∣∣ Û ∣∣∣ 11

〉
= eiγ . (H.3)

Together with
2 cos(γ) = eiγ + e−iγ , (H.4)

and the condition that cos(γ) = −1 for γ = π, this determines the functional
Jγ ,

Jγ = 2 +
〈

00
∣∣∣ Û ∣∣∣ 00

〉〈
01
∣∣∣ Û† ∣∣∣ 01

〉〈
10
∣∣∣ Û† ∣∣∣ 10

〉〈
11
∣∣∣ Û ∣∣∣ 11

〉
+
〈

11
∣∣∣ Û† ∣∣∣ 11

〉〈
10
∣∣∣ Û ∣∣∣ 10

〉〈
01
∣∣∣ Û ∣∣∣ 01

〉〈
00
∣∣∣ Û† ∣∣∣ 00

〉
.

(H.5)

Jγ takes values in [0, 4].

In order to derive the boundary condition for the backward propagation
of Krotov’s method, we use the abbreviation

τ00 ≡
〈

00
∣∣∣ Û ∣∣∣ 00

〉
, (H.6)

and equivalently for |01〉, |10〉, and |11〉. The two terms of the functional
are then

Jss = 4− τ00τ
∗
00 − τ01τ

∗
01 − τ10τ

∗
10 − τ11τ

∗
11 , (H.7a)

Jγ = 2 + τ00τ
∗
01τ
∗
10τ11 + τ∗00τ01τ10τ

∗
11 . (H.7b)

In order to calculate the boundary conditions for the backward propa-
gated states,

|χ(T )〉i = − ∂JT
∂ 〈i(T )| ; |i(T )〉 ≡ Û |i〉 ; i = {00, 01, 10, 11} , (H.8)

we use

∂τi
∂ 〈j(T )| = 0, ∂τ∗i

∂ 〈j(T )| = δij |i〉 ; i, j = {00, 01, 10, 11} . (H.9)

This yields

|χ(T )〉00 = (τ00 − wγτ01τ10τ
∗
11) |00〉 , (H.10a)

|χ(T )〉01 = (τ01 − wγτ00τ
∗
10τ11) |01〉 , (H.10b)

|χ(T )〉11 = (τ11 − wγτ∗00τ01τ10) |11〉 , (H.10c)
|χ(T )〉10 = (τ10 − wγτ00τ

∗
01τ11) |10〉 . (H.10d)
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H.2 Liouville Space Functional
Based on the work presented in chapter 7, an optimization functional for
a holonomic gate in Liouville space can be formulated. The optimization
success is tracked by the three states ρ̂1, ρ̂2, ρ̂3 defined in Eq. (7.12). The
optimization functional contains one term for each of these matrices,

JT = w1J1 + w2J2 + w3J3 . (H.11)

with weights w1, w2, w3.
When the optimization target is reached,

Ûρ̂1Û† = ρ̂1 , Ûρ̂3Û† = ρ̂3 . (H.12)

The state ρ̂3 ensures that no population is lost from the logical subspace,
ρ̂1 optimizes for a diagonal gate. Therefore, we choose

J1,3 = 1− 1
tr
[
ρ̂2

1,3
]Re

[ 〈〈
ρ̂1,3

∣∣∣ E ρ̂1,3
〉〉 ]

= 1− 1
tr
[
ρ̂2

1,3
] 1

2
[ 〈〈
ρ̂1,3

∣∣∣ E ρ̂1,3
〉〉

+
〈〈
E ρ̂1,3

∣∣∣ ρ̂1,3
〉〉 ]

,
(H.13)

using E to indicate the dynamical map, and a braket-notation for the
Hilbert-Schmidt product, 〈〈

Â
∣∣∣ B̂

〉〉
≡ tr

[
Â†B̂

]
. (H.14)

The remaining state ρ̂2 is used to track the relative phases and to optimize
the entanglement. If Û is diagonal as in Eq. (2.29), then

Ûρ̂2Û† =
∑
i,j

ei(φi−φj) |i〉〈j| ; i, j = {00, 01, 10, 11} . (H.15)

With γ = (φ00 − φ01) + (φ00 − φ10) + (φ11 − φ00) and P̂i,j ≡ |i〉〈j|, we find

eiγ =
〈〈

P̂00,01
∣∣∣ Ûρ̂2Û†

〉〉 〈〈
P̂00,10

∣∣∣ Ûρ̂2Û†
〉〉 〈〈

P̂11,00
∣∣∣ Ûρ̂2Û†

〉〉
(H.16)

e−iγ =
〈〈

Ûρ̂2Û†
∣∣∣ P̂00,01

〉〉 〈〈
Ûρ̂2Û†

∣∣∣ P̂00,10
〉〉 〈〈

Ûρ̂2Û†
∣∣∣ P̂11,00

〉〉
(H.17)

With Eq. (H.4) and the generalization Ûρ̂2Û† → E ρ̂2, we obtain the func-
tional for ρ̂2,

J2 = 2 +
〈〈

P̂00,01
∣∣∣ E ρ̂2

〉〉 〈〈
P̂00,10

∣∣∣ E ρ̂2
〉〉 〈〈

P̂11,00
∣∣∣ E ρ̂2

〉〉
+
〈〈
E ρ̂2

∣∣∣ P̂00,01
〉〉 〈〈
E ρ̂2

∣∣∣ P̂00,10
〉〉 〈〈
E ρ̂2

∣∣∣ P̂11,00
〉〉
.

(H.18)
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J1 and J3 take values in [0, 1], whereas J2 takes values in [0, 4].
Equivalently to Eq. (H.8), the boundary condition for the backward-

propagated states in Krotov’s method is

σ̂i(T ) = − ∂JT
∂ 〈〈E ρ̂i|

; i = {1, 2, 3} , (H.19)

which yields

σ̂1(T ) = w1
2 ρ̂1 , (H.20)

σ̂2(T ) = −
〈〈
E ρ̂2

∣∣∣ P̂00,10
〉〉 〈〈
E ρ̂2

∣∣∣ P̂11,00
〉〉
w2 P̂00,01

−
〈〈
E ρ̂2

∣∣∣ P̂00,01
〉〉 〈〈
E ρ̂2

∣∣∣ P̂11,00
〉〉
w2 P̂00,10 (H.21)

−
〈〈
E ρ̂2

∣∣∣ P̂00,10
〉〉 〈〈
E ρ̂2

∣∣∣ P̂00,01
〉〉
w2 P̂11,00 ,

σ̂3(T ) = w3
2 ρ̂3 . (H.22)
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