Optimal Control for Entangling Quantum Gates

Michael Goerz

Stanford/Army Research Lab

UMBC Physics Colloquium April 19, 2017

the quantum optimal control problem

quantum technology

steer quantum system in some desired way

the quantum optimal control problem

quantum technology

steer quantum system in some desired way

examples:

. . .

- photo-chemistry: form atomic bonds
- medical imaging: orient nuclear spin for max resolution
- **quantum networks:** prepare non-classical states
- quantum computing: apply logical operation ("gate")

$$\left|\Psi\right\rangle = \alpha_{0}\underbrace{\left|0\dots1\right\rangle}_{\mathsf{N \ qubits}} + \dots + \alpha_{\mathsf{2^{N}}}\left|1\dots1\right\rangle$$

reduce to two-qubit gates: 4×4 matrix

$$|\Psi\rangle = \alpha_0 \underbrace{|0\dots1\rangle}_{\mathsf{N \ qubits}} + \dots + \alpha_{\mathsf{2^N}} |1\dots1\rangle$$

reduce to two-qubit gates: 4×4 matrix

$$|\Psi
angle
ightarrow \hat{\mathbf{0}} |\Psi
angle \; , e.g.$$

 $\hat{\mathbf{0}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}$

$$\left|\Psi\right\rangle = \alpha_{0}\underbrace{\left|0\dots1\right\rangle}_{\mathsf{N \ qubits}} + \dots + \alpha_{\mathsf{2^{N}}}\left|1\dots1\right\rangle$$

reduce to two-qubit gates: 4×4 matrix

$$\left|\Psi\right\rangle = \alpha_{0}\underbrace{\left|0\dots1\right\rangle}_{\mathsf{N \ qubits}} + \dots + \alpha_{2^{\mathsf{N}}}\left|1\dots1\right\rangle$$

reduce to two-qubit gates: 4×4 matrix

Implementations:

- trapped atoms
- superconducting circuits
- NV centers
- quantum dots

...

logical subspace

logical subspace

logical subspace embedded in larger total Hilbert space!

analytical:

- geometric control low dimension
- adiabatic schemes (e.g. STIRAP) slow
- open quantum systems? noise? fundamental limits?

analytical:

- geometric control low dimension
- adiabatic schemes (e.g. STIRAP) slow
- open quantum systems? noise? fundamental limits?

numerical:

analytical:

- geometric control low dimension
- adiabatic schemes (e.g. STIRAP) slow
- open quantum systems? noise? fundamental limits?

numerical:

analytical:

- geometric control low dimension
- adiabatic schemes (e.g. STIRAP) slow
- open quantum systems? noise? fundamental limits?

numerical:

minimize functional J_T

e.g.
$$J_T = 1 - \frac{1}{d^2} \sum_{k=1}^d \left| \left\langle \Psi_k^{\text{tgt}} \middle| \Psi_k(T) \right\rangle \right|^2$$

analytical:

- geometric control low dimension
- adiabatic schemes (e.g. STIRAP) slow
- open quantum systems? noise? fundamental limits?

numerical:

$$|\Psi^{(0)}\rangle = t_{0} t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} T$$

minimize functional J_T

e.g.
$$J_{\mathcal{T}} = 1 - \frac{1}{d^2} \sum_{k=1}^{d} \left| \left\langle \Psi_k^{\text{tgt}} \middle| \Psi_k(\mathcal{T}) \right\rangle \right|^2$$

 \Rightarrow iterative scheme

propagation

iteration

 $\Delta \epsilon$

Optimization Methods

only evaluate fig. of merit J_T ■ any J_T

- any J_T
- good for small number of control parameters

only evaluate fig. of merit J_T

- any J_T
- good for small number of control parameters

Nelder-Mead simplex:

only evaluate fig. of merit J_T

- any J_T
- good for small number of control parameters

Nelder-Mead simplex:

easy to use: scipy.optimize, Matlab, ...

• control parameters: $\epsilon_i = \epsilon(t_i)$ for all points on time grid

• control parameters: $\epsilon_i = \epsilon(t_i)$ for all points on time grid • $J_T \sim \langle \Psi^{\text{tgt}} | \Psi(T) \rangle = \left\langle \Psi^{\text{tgt}} | \hat{\mathbf{U}}_{nt} \dots \hat{\mathbf{U}}_1 | \Psi_0 \right\rangle$

a control parameters: $\epsilon_i = \epsilon(t_i)$ for all points on time grid **a** $J_T \sim \langle \Psi^{\text{tgt}} | \Psi(T) \rangle = \left\langle \Psi^{\text{tgt}} | \hat{\mathbf{U}}_{nt} \dots \hat{\mathbf{U}}_1 | \Psi_0 \right\rangle$ **a** $\frac{\partial J_T}{\partial \epsilon_i} = \underbrace{\left\langle \Psi^{\text{tgt}} \middle| \hat{\mathbf{U}}^{\dagger}(t_i, T) \right\rangle}_{\langle \Psi_{bw} |} \underbrace{\frac{\partial \hat{\mathbf{U}}_i}{\partial \epsilon_i}}_{|\Psi_{fw} \rangle}_{|\Psi_{fw} \rangle}$

a control parameters: $\epsilon_i = \epsilon(t_i)$ for all points on time grid **a** $J_T \sim \langle \Psi^{\text{tgt}} | \Psi(T) \rangle = \left\langle \Psi^{\text{tgt}} | \hat{\mathbf{U}}_{nt} \dots \hat{\mathbf{U}}_1 | \Psi_0 \right\rangle$ **a** $\frac{\partial J_T}{\partial \epsilon_i} = \underbrace{\left\langle \Psi^{\text{tgt}} | \hat{\mathbf{U}}^{\dagger}(t_i, T)}_{\langle \Psi_{bw} |} \underbrace{\frac{\partial \hat{\mathbf{U}}_i}{\partial \epsilon_i}}_{|\Psi_{fw} \rangle} \underbrace{\hat{\mathbf{U}}(t_i, t_0) | \Psi_0 \right\rangle}_{|\Psi_{fw} \rangle}$

update scheme

$$\begin{split} \Delta \epsilon_{i} \sim \frac{\partial J_{T}}{\partial \epsilon_{i}} \sim \left\langle \Psi^{\mathsf{bw}} \middle| \frac{\partial \hat{\mathbf{U}}_{i}}{\partial \epsilon_{i}} \middle| \Psi^{\mathsf{fw}} \right\rangle \\ |\Psi^{(0)} \rangle & \stackrel{|}{\underset{t_{0}}{\overset{|$$

a control parameters: $\epsilon_i = \epsilon(t_i)$ for all points on time grid **a** $J_T \sim \langle \Psi^{\text{tgt}} | \Psi(T) \rangle = \left\langle \Psi^{\text{tgt}} \middle| \hat{\mathbf{U}}_{nt} \dots \hat{\mathbf{U}}_1 \middle| \Psi_0 \right\rangle$ **a** $\frac{\partial J_T}{\partial \epsilon_i} = \underbrace{\left\langle \Psi^{\text{tgt}} \middle| \hat{\mathbf{U}}^{\dagger}(t_i, T)}_{\langle \Psi_{bw} |} \underbrace{\frac{\partial \hat{\mathbf{U}}_i}{\partial \epsilon_i}}_{|\Psi_{fw} \rangle} \underbrace{\hat{\mathbf{U}}(t_i, t_0) \middle| \Psi_0 \right\rangle}_{|\Psi_{fw} \rangle}$

update scheme

Khaneja et al. J. Magnet. Res. 172, 296 (2005) library implementation: L-BFGS-B

• variational calculus, for *continuous* $\epsilon(t)$

• variational calculus, for *continuous* $\epsilon(t)$

• extended functional: $J = J_T(\Psi) + \int_0^T J_t(\epsilon, \Psi) dt$

- variational calculus, for *continuous* $\epsilon(t)$
- extended functional: $J = J_T(\Psi) + \int_0^T J_t(\epsilon, \Psi) dt$

•
$$\partial_{\epsilon}J = 0$$
, $\partial_{\epsilon}^{2}J > 0$, $\partial_{\Psi}J = 0$

- variational calculus, for *continuous* $\epsilon(t)$
- extended functional: $J = J_T(\Psi) + \int_0^T J_t(\epsilon, \Psi) dt$

$$\ \, \partial_{\epsilon}J=0, \ \partial_{\epsilon}^{2}J>0, \ \partial_{\Psi}J=0$$

• Krotov: separate dependency of states and field $(|\Psi(t)\rangle = \hat{\mathbf{U}}(t,0;\epsilon(t)) |\Psi_0\rangle)$

- variational calculus, for *continuous* $\epsilon(t)$
- extended functional: $J = J_T(\Psi) + \int_0^T J_t(\epsilon, \Psi) dt$

$$\ \, \partial_{\epsilon}J=0, \ \partial_{\epsilon}^{2}J>0, \ \partial_{\Psi}J=0$$

- Krotov: separate dependency of states and field $(|\Psi(t)\rangle = \hat{\mathbf{U}}(t,0;\epsilon(t)) |\Psi_0\rangle)$
- $\Rightarrow \epsilon^{(1)}$ that minimizes J_T relative to $\epsilon^{(0)}$.

- variational calculus, for *continuous* $\epsilon(t)$
- extended functional: $J = J_T(\Psi) + \int_0^T J_t(\epsilon, \Psi) dt$

$$\ \, \partial_{\epsilon}J=0, \ \partial_{\epsilon}^{2}J>0, \ \partial_{\Psi}J=0$$

- Krotov: separate dependency of states and field $(|\Psi(t)\rangle = \hat{\mathbf{U}}(t,0;\epsilon(t)) |\Psi_0\rangle)$
- $\Rightarrow \epsilon^{(1)}$ that minimizes J_T relative to $\epsilon^{(0)}$.

update scheme

$$\Delta \epsilon(t) \sim \langle \chi^{\mathsf{bw}} | \frac{\partial \hat{\mathsf{H}}}{\partial \epsilon} | \Psi^{\mathsf{fw}} \rangle$$
$$|\Psi^{(0)} \rangle \underbrace{\stackrel{\epsilon^{(1)}}{\stackrel{\downarrow}{\overset{\downarrow}{\overset{\downarrow}{\overset{\bullet}{\overset{\bullet}}}}}}_{t_0} \epsilon^{(0)}}_{t_0} | \chi \rangle = \frac{\partial J_T}{\langle \Psi |}$$

Reich et al. J. Chem. Phys. 136, 104103 (2012)

GRAPE

- sequential update
- continuous \rightarrow discrete
- guaranteed monotonic convergence
- *J_T* only in boundary condition

- concurrent update
- inherently discrete
- parametrization through chain rule

Applications
the quantum speed limit

progressively decrease gate duration

the quantum speed limit

- progressively decrease gate duration
- QSL is reached when objective can no longer be reached

the quantum speed limit

- progressively decrease gate duration
- QSL is reached when objective can no longer be reached

example: optimization of entangling and local gates in superconducting transmon qubits

robustness to classical fluctuations

robustness to classical fluctuations

noise sources: fluctuation of Rydberg level, field amplitude

robustness to classical fluctuations

noise sources: fluctuation of Rydberg level, field amplitude

ensemble optimization

simultaneously optimize over multiple copies of the system with different noise realizations

 \Rightarrow Goerz, Halperin, Aytac, Koch, Whaley. PRA 90, 032329 (2014) Michael Goerz • Stanford/ARL • optimal control for entangling quantum gates

 \Rightarrow Goerz, Halperin, Aytac, Koch, Whaley. PRA 90, 032329 (2014) Michael Goerz • Stanford/ARL • optimal control for entangling quantum gates

 \Rightarrow Goerz, Halperin, Aytac, Koch, Whaley. PRA 90, 032329 (2014) Michael Goerz • Stanford/ARL • optimal control for entangling quantum gates

 \Rightarrow Goerz, Halperin, Aytac, Koch, Whaley. PRA 90, 032329 (2014) Michael Goerz • Stanford/ARL • optimal control for entangling quantum gates

just optimize density matrices!

just optimize density matrices!

$$J_{\mathcal{T}} = 1 - \sum_{i=1}^{3} rac{w_i}{\operatorname{tr}[\hat{
ho}_i^2]} \mathfrak{Re}\left\{\operatorname{tr}\left[\hat{
ho}_i^{\operatorname{tgt}}\hat{
ho}_{i,n}(\mathcal{T})
ight]
ight\}$$

just optimize density matrices!

$$J_{\mathcal{T}} = 1 - \sum_{i=1}^{3} rac{w_i}{\operatorname{tr}[\hat{
ho}_i^2]} \mathfrak{Re}\left\{\operatorname{tr}\left[\hat{
ho}_i^{\operatorname{tgt}}\hat{
ho}_{i,n}(\mathcal{T})
ight]
ight\}$$

just optimize density matrices!

 \Rightarrow Goerz, Reich, Koch. NJP 16, 055012 (2014).

always 3 states, independent of dimension!

just optimize density matrices!

 \Rightarrow Goerz, Reich, Koch. NJP 16, 055012 (2014).

always 3 states, independent of dimension!

Alternative: MCWF trajectories

 $\mathbf{\hat{H}} = \mathbf{\hat{H}}_1 + \mathbf{\hat{H}}_2 + i\kappa(\mathbf{\hat{a}}_1^{\dagger}\mathbf{\hat{a}}_2 - \mathbf{\hat{a}}_1\mathbf{\hat{a}}_2^{\dagger}), \quad \mathbf{\hat{L}} = \sqrt{2\kappa}(\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2)$

 $\mathbf{\hat{H}} = \mathbf{\hat{H}}_1 + \mathbf{\hat{H}}_2 + i\kappa(\mathbf{\hat{a}}_1^{\dagger}\mathbf{\hat{a}}_2 - \mathbf{\hat{a}}_1\mathbf{\hat{a}}_2^{\dagger}), \quad \mathbf{\hat{L}} = \sqrt{2\kappa}(\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2)$

propagate with $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} - \frac{i\hbar}{2} \hat{\mathbf{L}}^{\dagger} \hat{\mathbf{L}}$, jump randomly with probability of $\|\Psi\|$

$$\mathbf{\hat{H}} = \mathbf{\hat{H}}_1 + \mathbf{\hat{H}}_2 + i\kappa(\mathbf{\hat{a}}_1^{\dagger}\mathbf{\hat{a}}_2 - \mathbf{\hat{a}}_1\mathbf{\hat{a}}_2^{\dagger}), \quad \mathbf{\hat{L}} = \sqrt{2\kappa}(\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2)$$

propagate with $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} - \frac{i\hbar}{2} \hat{\mathbf{L}}^{\dagger} \hat{\mathbf{L}}$, jump randomly with probability of $\|\Psi\|$

$$\mathbf{\hat{H}} = \mathbf{\hat{H}}_1 + \mathbf{\hat{H}}_2 + i\kappa(\mathbf{\hat{a}}_1^{\dagger}\mathbf{\hat{a}}_2 - \mathbf{\hat{a}}_1\mathbf{\hat{a}}_2^{\dagger}), \quad \mathbf{\hat{L}} = \sqrt{2\kappa}(\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2)$$

propagate with $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} - \frac{i\hbar}{2} \hat{\mathbf{L}}^{\dagger} \hat{\mathbf{L}}$, jump randomly with probability of $\|\Psi\|$

for two-qubit gates: many quantum gates are useful

for two-qubit gates: many quantum gates are usefulwhich are most robust with respect to dissipation?

- for two-qubit gates: many quantum gates are usefulwhich are most robust with respect to dissipation?
- Cartan decomposition of any 4 × 4 unitary

- for two-qubit gates: many quantum gates are usefulwhich are most robust with respect to dissipation?
- Cartan decomposition of any 4×4 unitary

optimization for a perfect entangler

PE optimization for superconducting transmon qubits

optimization for a perfect entangler

PE optimization for superconducting transmon qubits

optimization for a perfect entangler

PE optimization for superconducting transmon qubits

two transmon qubits with shared transmission line

two transmon qubits with shared transmission line

two transmon qubits with shared transmission line

optimal choice of parameters?

two transmon qubits with shared transmission line

optimal choice of parameters?

two transmon qubits with shared transmission line

optimal choice of parameters?

 \Rightarrow Goerz et al. arXiv:1606.08825 (2016).

hybrid optimization schemes

combine gradient-free and gradient-based optimization in multiple stages

hybrid optimization schemes

combine gradient-free and gradient-based optimization in multiple stages

- ⇒ Faster convergence
- \Rightarrow Cleaner pulses

hybrid optimization schemes

combine gradient-free and gradient-based optimization in multiple stages

- ⇒ Faster convergence
- \Rightarrow Cleaner pulses

Bridging the gap to experiment: spectral constraints, Hamiltonian estimation, noise source, ...

OCT: toolbox for quantum engineering

OCT: toolbox for quantum engineering

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
summary

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
- applications
 - quantum speed limit

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
- applications
 - quantum speed limit
 - \blacksquare robustness w.r.t fluctuations \rightarrow ensemble optimization

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
- applications
 - quantum speed limit
 - \blacksquare robustness w.r.t fluctuations \rightarrow ensemble optimization
 - robustness w.r.t. dissipation:

density matrix optimization, trajectories, advanced functionals

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
- applications
 - quantum speed limit
 - \blacksquare robustness w.r.t fluctuations \rightarrow ensemble optimization
 - robustness w.r.t. dissipation:
 - density matrix optimization, trajectories, advanced functionals
 - design landscape explorations

- optimization methods
 - gradient-free
 - gradient-based: GRAPE, Krotov's method
- applications
 - quantum speed limit
 - \blacksquare robustness w.r.t fluctuations \rightarrow ensemble optimization
 - robustness w.r.t. dissipation:
 - density matrix optimization, trajectories, advanced functionals
 - design landscape explorations
 - bridging the gap to experiment: hybrid optimization schemes, filters

acknowledgements

Christiane Koch Kassel

Birgitta Whaley Berkeley

Felix Motzoi

Hideo Mabuchi Stanford

Kurt Jacobs ARL

github.com/mabuchilab/QNET

acknowledgements

Christiane Koch Kassel

Birgitta Whaley Berkeley

Felix Motzoi

Hideo Mabuchi Stanford

Kurt Jacobs ARL

github.com/mabuchilab/QNET

Thank you!