
Quantum Optimal Control
via Semi-Automatic Differentiation
Michael H. Goerz, Sebastián C. Carrasco, and Vladimir S. Malinovsky

DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA

We develop a framework of “semi-automatic differentiation” that combines existing
gradient-based methods of quantum optimal control with automatic differentiation. The
approach allows to optimize practically any computable functional and is implemented in
two open source Julia packages, GRAPE.jl and Krotov.jl, part of the QuantumControl.jl
framework. Our method is based on formally rewriting the optimization functional in terms
of propagated states, overlaps with target states, or quantum gates. An analytical appli-
cation of the chain rule then allows to separate the time propagation and the evaluation
of the functional when calculating the gradient. The former can be evaluated with great
efficiency via a modified grape scheme. The latter is evaluated with automatic differenti-
ation, but with a profoundly reduced complexity compared to the time propagation. Thus,
our approach eliminates the prohibitive memory and runtime overhead normally associated
with automatic differentiation and facilitates further advancement in quantum control by
enabling the direct optimization of non-analytic functionals for quantum information and
quantum metrology, especially in open quantum systems. We illustrate and benchmark the
use of semi-automatic differentiation for the optimization of perfectly entangling quantum
gates on superconducting qubits coupled via a shared transmission line. This includes the
first direct optimization of the non-analytic gate concurrence.

1 Introduction
Optimal control is a cornerstone in the development of quantum technologies [1–7]. Quantum infor-
mation processing [8], quantum simulation [9], and quantum sensing [10] all rely on the ability to
manipulate matter at the fundamental quantum level. In simple cases, analytical solutions to the con-
trol problem may be possible [11]. In more realistic settings, in particular, when taking into account
classical or quantum noise, numerical optimization methods must be used. The most general meth-
ods for open-loop pulse-level control, gradient-ascent-pulse-engineering (grape) [12, 13] and Krotov’s
method [14–20] can both harness the full range of control possible via arbitrary waveform genera-
tors [21] or optical pulse shapers [22]. These methods iteratively update the controls via gradient
information, that is, the derivative of the optimization functional with respect to the control param-
eters. Most generally, the control parameters are the amplitudes of time-dependent control fields,
e.g., laser pulses in the control of trapped atoms or ions, and microwave pulses for the control of
superconducting circuits.

Traditionally, the required gradients have to be derived analytically. In particular for grape,
the numerical scheme [12] is formulated specifically for an overlap with a target state. This limits
existing grape implementations [23–26] to a small class of optimization functionals that include state-
to-state transfers and quantum gates. The implementation of Krotov’s method [27] provides slightly

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
5.

15
04

4v
2

 [
qu

an
t-

ph
]

 1
 D

ec
 2

02
2

https://quantum-journal.org/?s=Quantum%20Optimal%20Control%20\par%20via%20Semi-Automatic%20Differentiation&reason=title-click
https://quantum-journal.org/?s=Quantum%20Optimal%20Control%20\par%20via%20Semi-Automatic%20Differentiation&reason=title-click

more flexibility, but still requires that a function to evaluate the gradient is passed along with the
optimization functional.

The limitation to standard functionals [19] has restrained the full potential of quantum control.
In many applications, both in quantum information and in quantum sensing, there are figures of
merit that capture the true objective of the optimization but do not fit into the simple mold of
reaching a specific target state. For example, the true intent of a control scheme is often to generate
entanglement. Similarly, in metrology, the quantum Fisher information [28] directly measures the
metrological gain [29, 30].

In the context of universal quantum computing, in combination with single-qubit gates, any per-
fectly entangling two-qubit gate is sufficient to implement a quantum circuit [8]. For a complex system,
which specific gate can be implemented with minimal resources or with maximum noise robustness is
not predictable, but can be identified by directly maximizing the entanglement power, as defined by
the gate concurrence [31]. This is complicated by the fact that the gate concurrence is not an analytic
quantity and thus there is no closed-form expression for the gradient. To address this, based on the
geometric theory of two-qubit gates in the Weyl chamber [32, 33], an alternative functional that has
an analytic, albeit complicated, gradient was formulated and demonstrated in Refs. [34, 35].

A breakthrough in the flexibility of quantum optimal control was made by adopting automatic
differentiation (AD) in Refs. [36–40], with proof-of-concept implementations in Refs. [41, 42]. Auto-
matic differentiation [43, 44] considers the evaluation of the optimization functional as a computational
graph of elementary operations, and applies the chain rule to evaluate its derivative. This relies on
the realization that at a sufficiently low level, any function numerically evaluated by a computer is
analytic.

In addition to providing the flexibility to include arbitrary final-time functional and running costs,
AD has enabled the optimization of open quantum systems through quantum trajectories [38, 45,
46], which are otherwise difficult to incorporate analytically [47]. The approach of gradient-based
optimization through AD has also been taken up in some more comprehensive quantum control software
packages [48–50].

Although first developed in the 1960s [51], the widespread use of AD is associated with the rise of
machine learning. It is at the core of the backpropagation method [52] for training neural networks.
Hence, it is most commonly embedded in machine learning frameworks such as Tensorflow [53], Py-
Torch [54, 55], jax [56, 57], or Flux/Zygote [58–61]. These frameworks have traditionally focused only
on the numerical operations required for neural networks, specifically dense real-valued matrix-vector
multiplications. The in-place sparse complex-valued linear algebra operations required for the efficient
numerical methods of quantum dynamics [62–66] have only recently started to be addressed and thus
have required workarounds that have hindered performance.

More fundamentally, AD requires the storage of gradient-information for every node in the com-
putational graph. In a “full-AD” mode as in Refs. [36–40], where the full time propagation as well as
the evaluation of the optimization functional are performed within the AD framework, this generally
implies the storage of a gradient matrix or vector for every linear algebra operation. For large Hilbert
space dimensions, open quantum systems, or a large number of control parameters (time steps), this
numerical overhead quickly becomes prohibitive.

In this paper, we address both of these issues by introducing the approach of semi-automatic
differentiation. The approach exploits the fact that all pulse-level quantum control problems are
based on the time evolution of quantum states. We show how formally rewriting the optimization
functional as a function of the propagated states, of the overlaps with target states, or of a quantum
gate allows to split the evaluation of the gradient into two parts. The main part can be evaluated
analytically and leads to an efficient modified grape scheme. The remaining part has a profoundly
reduced computational complexity and can be evaluated using automatic differentiation with negligible
numerical overhead.

The modified grape scheme is described in detail and compared with Krotov’s method. Thus,
the paper gives a blueprint for the efficient implementation of gradient-based optimal control for
arbitrary functionals. In addition, we have also implemented the method in the Julia programming

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 2

language [67, 68] in two packages GRAPE.jl [69] and Krotov.jl [70], both of which are part of a more
comprehensive QuantumControl.jl framework [71].

To demonstrate the numerical efficacy of the semi-automatic differentiation approach, we bench-
mark the optimization of entangling quantum gates for two superconducting transmon qubits [72]
with a shared transmission line [73] for a varying Hilbert space dimension and a varying number of
time steps. In addition to replicating the results of Refs. [34, 35] with an automatic gradient, we also
demonstrate the first direct optimization of a non-analytic entanglement measure [31]. We show that
the numerical cost of the optimization in terms of both memory and runtime scales identically to the
direct optimization of a specific quantum gate with an analytic gradient. This is in stark contrast
to the use of full automatic differentiation along the lines of Refs. [36–40], which we show to quickly
become infeasible in terms of memory usage and/or runtime.

The paper is structured as follows. In Section 2, we review the efficient implementation of grape
and Krotov’s method. This includes the calculation of gradients to machine precision. The numerical
scheme described here also applies to the analytic component of the semi-AD approach, with only
minor changes. In Section 3, we briefly review the concepts of automatic differentiation to develop an
understanding of the potential implications of a full-AD approach on numerical costs. Section 4 then
develops the theory of semi-automatic differentiation and contains the main new results of this paper.
Section 5 defines the optimization problem for perfectly entangling quantum gates on superconducting
transmon qubits and shows the benchmarks of the semi-AD and full-AD approaches, as well as the
direct optimization of a quantum gate. Section 6 concludes.

2 Gradient-based Optimal Control
In this section, we review standard methods of gradient-based numerical control theory. As we will
show in section 4, the method of semi-automatic differentiation that we introduce in this paper builds
on these existing control methods, with minimal additional numerical overhead. That is, the numerical
cost of optimizing arbitrary functionals with semi-automatic differentiation is virtually the same as
the cost of optimizing standard functionals with traditional gradient-based control methods. Thus, we
review the state-of-the-art for implementing these methods as efficiently as possible.

2.1 Optimization Functionals
Mathematically, quantum control problems are solved by iteratively minimizing an optimization func-
tional of the general form

J({εnl}) = JT ({|Ψk(T)〉}) +
∫ T

0
ga
(
{εl(t)}, t

)
dt+

∫ T

0
gb
(
{|Ψk(t)〉}, t

)
dt . (1)

The terms that constitute the total functional are the final time functional JT and the running costs
ga,b(t) that may encode penalties on the pulse amplitudes or on the propagated states. JT depends
explicitly on the states {|Ψk(T)〉}. These are the result of a forward propagation of some set of states
{|φk〉} at t = 0 under the control fields εl(t). The index l numbers independent control fields. In the
example in Section 5, this would be the real and imaginary part of a complex-valued microwave field
in a rotating frame, or equivalently the amplitude and phase of the microwave field in the non-rotating
frame. The index k numbers different “objectives” that must be achieved simultaneously. For the
example of a two-qubit gate Ô, k numbers the four logical basis states |00〉, |01〉, |10〉, and |11〉. Then,
a typical functional is

JT = JT,sm = 1−
∣∣∣ 1
N

N∑
k=1
〈φtgtk |Û|φk〉

∣∣∣2 , (2)

with N = 4, where |φtgtk 〉 ≡ Ô |φk〉 is a target state at t = T and Û is the time evolution operator, so

that |Ψk(T)〉 ≡ Û |φk〉.

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 3

On the left-hand side the functional J explicitly depends on a set of control parameters {εnl}.
We will primarily focus here on piecewise constant control fields. In this case, εnl is the value of the
l’th control field on the n’th interval of the time grid. With NT time intervals, the time evolution

operator is then Û =
∏n=1
n=NT

e−iĤndtn where Ĥn is the Hamiltonian for the n’th interval on the time

grid, dtn = tn− tn−1, typically Ĥn = Ĥ(0) +
∑
l εnlĤ(l) with the drift Hamiltonian Ĥ(0) and the control

Hamiltonians {Ĥ(l)}; although a nonlinear dependency on the control fields is also possible.
While we have written the functional and the time evolution in terms of Hilbert space states and

Hamiltonians, all of the formalism applies equally to open quantum systems. In this case, any state |Ψ〉
is replaced by a density matrix ρ̂ and any Hamiltonian Ĥ is replaced by a Liouvillian super-operator
L. Any inner product 〈Ψ|Φ〉 is defined for (density) matrices as tr[Â†B̂]. In any case, from a numerical
perspective, a state |Ψ〉 or a (vectorized) density matrix ρ̂ is a complex vector, and a Hamiltonian Ĥ or
a Liouvillian L is a (sparse) matrix acting on that vector. The main distinction is that Ĥ for a normal
Schrödinger equation is Hermitian, while L is not. For open quantum systems described by a master
equation in Lindblad form, the explicit L can be constructed as a sparse matrix from the Lindblad
operators; see, e.g., Appendix B.2 in Ref. [74].

2.2 GRAPE
The most direct gradient-based method for minimizing a functional as in Eq. (1) is Gradient Ascent
Pulse Engineering (grape) [12]. In its original form, the optimization is performed by calculating the
gradient ∇J for the piecewise-constant pulse values as the control parameters, i.e., the vector of values

∂J/∂ε
(i)
nl for all values n, l of the control field in iteration (i), and then update the control field in the

direction of the gradient as ε
(i+1)
nl = ε

(i+1)
nl − α(∇J)nl with some fixed step width (or “learning rate”)

α.
In practice, once the gradient ∇J has been calculated, it can be fed into a black-box gradient-based

optimization package, e.g. the Matlab or SciPy optimization toolboxes [75–77] or standalone packages
such as Optim.jl [78]. For one, these packages will perform a linesearch to determine a suitable
step width α in each iteration. Even more importantly, they can employ quasi-Newton methods for
the optimization that use a Hessian (the matrix of second order derivatives) estimated only from the
gradient information of previous iterations. Using second-order information in this way dramatically
speeds up convergence [13] and is strongly recommended.

We find that l-bfgs-b [79], written in Fortran [80] with wrappers for Python [77] and Julia [81]
is a particularly robust quasi-Newton optimizer. It also includes the possibility to apply bounds
to the control field (hence the suffix -B). Its particular line search method requires recalculating
∇J for each step, so it is numerically more expensive than some other linesearch methods that use
only evaluations of J to determine α. Other implementations of lbfgs [78] allow for a variety of
linesearch algorithms [82] with more customization. However, we have not found any of these to
reliably yield better convergence than the method built in to l-bfgs-b, and indeed have found the
lack of hyperparameters in l-bfgs-b to be a virtue.

2.3 Efficient Evaluation of Final-Time Gradients
Typically, implementations of grape only consider specific final-time functionals, J ≡ JT in Eq. (1),
e.g., JT = JT,sm given by Eq. (2). We will discuss the efficient evaluation of the gradient for this
special case here, and the more general case with non-zero running costs in Section 4.4. To evaluate
∇JT , we define τk ≡ 〈φtgtk |Ψk(T)〉 with |Ψk(T)〉 = Û |φk〉 = ÛNT . . . Û1 |φk〉 for each of the k objectives.

The time evolution operators Ûn for the time intervals n = 1 . . . NT are piecewise constant. We first
consider

∇τ (k)
nl ≡

∂

∂εnl
〈φtgtk |Ψk(T)〉 = ∂

∂εnl
〈φtgtk |ÛNT

. . . Ûn . . . Û1|φk〉 =
〈
χk(tn)

∣∣∣∣∂Ûn
∂εnl

∣∣∣∣Ψk(tn−1)
〉

(3)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 4

with |χk(tn)〉 = U†n+1 . . . U
†
NT
|φtgtk 〉, i.e., a backward-propagation of the target state with the adjoint

Hamiltonian or Liouvillian and |Ψk(tn−1)〉 = Ûn−1 . . . Û1 |φk〉, i.e., a forward-propagation of the initial
state.

The derivative of the time evolution operator Ûn of a particular time step acting on an arbitrary
state can be evaluated efficiently and to machine precision by defining a “gradient generator” for the
n’th time step as a block matrix

Gn =

Ĥn 0 . . . 0 Ĥ(1)

n

0 Ĥn . . . 0 Ĥ(2)
n

...
. . .

...

0 0 . . . Ĥn Ĥ(L)
n

0 0 . . . 0 Ĥn

 (4)

where Ĥ(l)
n ≡ ∂Ĥn

∂εnl
for the different controls numbered 1 through L, and Ĥn is the full Hamiltonian or

Liouvillian for that time step. It can be shown that [83, 84]

e−iGndtn

0
...
0
|Ψ〉

 =

∂

∂εn1
e−iĤ(1)

n dtn |Ψ〉
...

∂
∂εnL

e−iĤ(L)
n dtn |Ψ〉

e−iĤndtn |Ψ〉

 =

∂Ûn

∂εn1
|Ψ〉

...
∂Ûn

∂εnL
|Ψ〉

Ûn |Ψ〉

 . (5)

That is, by propagating an extended vector |Ψ̃〉 = [|ψ̃1〉 , . . . , |ψ̃L〉 , |Ψ〉]T under Gn, where the compo-
nents |ψ̃l〉 for the L different controls are initialized to zero, we obtain both the forward propagation of
an arbitrary state vector |Ψ〉 and the gradient of the time evolution operator for that step with respect
to every control field. Note that the block matrix defined in Eq. (4) does not need to be instantiated;
it is sufficient to define it as an abstract operator such that

Gn |Ψ̃〉 =

Ĥn |ψ̃1〉+ Ĥ(1)

n |Ψ〉
...

Ĥn |ψ̃L〉+ Ĥ(L)
n |Ψ〉

Ĥn |Ψ〉

 , (6)

where |ψ̃l〉 is the l’th block of the extended |Ψ̃〉 and |Ψ〉 is the state vector on which |Ψ̃〉 is based.
Thus, the data structure encoding Gn can be essentially the same as the data structure encoding Ĥn.

The propagation defined in Eq. (5) can be performed using any propagation method used to evaluate
the “normal” propagation Ûn |Ψ〉; that is, a generic ode solver, or preferably a more efficient polynomial

expansion of the time evolution operator Ûn = e−iĤdt for a uniform time step dt. For a Hermitian
Ĥ, Chebychev polynomials are the fastest converging polynomial expansion [85]. For the standard
Schrödinger equation, propagation with Chebychev polynomials Pm(x) is very straightforward and
efficient to implement. The time evolution of a state |Ψ〉 by a single time step dt for the n’th interval
of the time grid can be written as

Ûn |Ψ〉 =
∑
m

amPm(−iĤn,norm) |Ψ〉 =
∑
m

am |Φm〉 , (7)

where Ĥn,norm is the Hamiltonian Ĥn normalized to a spectral range within [−1, 1], and using the
recursive definition of the Chebychev polynomials,

|Φ0〉 = |Ψ〉 , (8a)
|Φ1〉 = −iĤn,norm |Φ0〉 , (8b)
|Φm〉 = −2iĤn,norm |Φm−1〉+ |Φm−2〉 . (8c)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 5

(a) GRAPE

1○ forward-prop and storage with guess

2○ backward-prop of extended state/gradient

φk Ψk(t1)

ε
(i−1)
l1

Ψk(t). . .

ε
(i−1)
l2

Ψk(t91)

ε
(i−1)
l91

Ψk(T)

ε
(i−1)
lNT

χ̃k(0) χ̃k(t1)

ε
(i−1)
l1

∇τ (k)
l1 χ̃k(t). . .

ε
(i−1)
l2

∇τ (k)
l2

χ̃k(t91)

ε
(i−1)
l91

∇τ (k)
l91

χ̃k(T)

ε
(i−1)
lNT

∇τ (k)
lNT

. . .

(b) Krotov’s method

2○ forward-prop with updated control

1○ backward-prop and storage with guess

φk Ψk(t1)

ε
(i)
l1

∆ε(k)
l1

Ψk(t). . .

ε
(i)
l2

∆ε(k)
l2

Ψk(t91)

ε
(i)
l91

∆ε(k)
l91

Ψk(T)

ε
(i)
lNT

∆ε(k)
lNT

χk(0) χk(t1)

ε
(i−1)
l1

χk(t). . .

ε
(i−1)
l2

χk(t91)

ε
(i−1)
l91

χk(T)

ε
(i−1)
lNT

∂Ĥk
∂εl(0)

∂Ĥk
∂εl(t1)

∂Ĥk
∂εl(t2)
. . . ∂Ĥk

∂εl(t91)

Figure 1: Numerical scheme for the contribution from the k’th objective to the gradient/update for the l’th control,
in iteration (i) of an optimization with GRAPE (a) and Krotov’s method (b). For GRAPE, the scheme starts in the
bottom left with the initial state |φk〉 at t = 0. The states marked in red must be stored in memory. The backward
propagation of the extended state |χ̃k(t)〉 is defined in Eq. (9). Both the forward and the backward propagation
uses the guess controls, indicated by the superscript (i − 1). A negative time index, e.g. in t91, is shorthand for
NT −1. The gradient values ∇τ (k)

nl marked in blue are defined in Eq. (10). For Krotov’s method, the schemes starts
in the top right of panel (b) with |χk(T)〉 defined in Eq. (14). The backward propagation uses the guess controls
(i− 1), while the forward propagation uses the updated controls (i). The updates ∆ε(k)

nl marked in blue correspond
to the terms under the sum in Eq. (12), at the midpoint of the n’th time interval. That is, they are summed over
k to obtain the total updated ε(i)

nl .

The expansion coefficients am for a given spectral range and a uniform time step dt can be calculated
analytically and are proportional to Bessel functions [62]. For a non-Hermitian Ĥ (e.g., a Liouvil-
lian), an expansion into Newton polynomials is suitable [64, 66, 86]. Both Chebychev and Newton
propagation have been implemented in Julia [87].

In this context, it is worth noting that the eigenvalues of Gn in Eq. (4) are the same as the
eigenvalues of the underlying Ĥn, with an additional (L+1) degeneracy. In particular, for a Hermitian

Ĥn the eigenvalues of Gn are real, despite Gn as a whole not being Hermitian. Thus, if e−iĤndt can be
evaluated via a Chebychev expansion, so can e−iGndt, with the same expansion coefficients.

The complete numerical scheme for evaluating ∇τ (k)
nl is shown in Fig. 1 (a). It starts at the

bottom left with the initial state |φk〉. This state is forward-propagated using the values ε
(i−1)
nl for

the l’th control and the n’th time step, where the superscript (i − 1) indicates the guess for the
current iteration (i). The propagation continues to the final state |Ψk(T)〉. All of these propagated
states must be stored in memory. After the forward-propagation ends, we initialize an extended state
|χ̃k(t = tNT

= T)〉 = [0, . . . 0, |φtgtk 〉]T , consisting of a zero block for each of the L controls εl(t) and the
target state for the objective (k) in the bottom block. This extended state is backward-propagated as
|χ̃k(tn−1)〉 = e−iG∗ndtn |χ̃k(tn)〉 with a negative time step dtn. In the full block-form of the extended
state and generator, each propagation step is defined as

|χ̃k1(tn−1)〉

...
|χ̃kL(tn−1)〉
|χk(tn−1)〉

 =

∂Û†n
∂εn1
|χk(tn)〉

...
∂Û†n
∂εnL

|χk(tn)〉
Û†n |χk(tn)〉

 = exp

−i

Ĥ†n 0 . . . 0 Ĥ(1)†

n

0 Ĥ†n . . . 0 Ĥ(2)†
n

...
. . .

...

0 0 . . . Ĥ†n Ĥ(L)†
n

0 0 . . . 0 Ĥ†n ,

 dtn

0
...
0

|χk(tn)〉

 , (9)

which is the backward version of the forward step defined in Eqs. (4–6). After each step in the backward
propagation, we calculate the nl’th component of the gradient of τk with respect to the control values,

∇τ (k)
nl ≡ (∇τk)nl = 〈χ̃kl(tn−1) |Ψk(tn−1)〉 , (10)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 6

where |χ̃kl(tn−1)〉 is the state from the l’th block of |χ̃k(tn−1)〉 and |Ψk(tn−1)〉 is read from the stored
forward-propagated states. After calculating this overlap, the first L blocks of |χ̃k(tn−1〉 must be
zeroed out before performing the next step in the backward propagation, so as to have the correct
state on the right-hand side of Eq. (9).

The scheme depicted in Fig. 1 (a) is inherently parallel in the different objectives (index k). This
is in fact one reason why we have framed the optimization of a quantum gate in terms of multiple
objectives, one for each of the logical basis states. The approach is in contrast to the approach taken by
most existing grape implementations [23, 24, 37] that treat the quantum gate Û as the dynamic object

and may even use explicit matrix-exponentiation to calculate Û = e−iĤdt, limiting the implementation
to small Hilbert space dimensions. In addition to numerical parallelizability and efficiency, formulating
the control problem in terms of multiple simultaneous objectives also allows the method to extend to
gate optimization in open quantum systems [88] or to ensemble optimization for robust quantum
gates [89].

In principle, we could reverse the order of the backward and forward propagation: Instead of
the procedure shown in Fig. 1 (a), we could first backward-propagate |χk(T)〉 = |φtgtk 〉 and store

the resulting |χk(t)〉, and then forward-propagate an extended state |Ψ̃k(t)〉 to evaluate ∇τ (k)
nl , using

Eqs. (4–6). This corresponds to ∂Ûn

∂εnl
in Eq. (3) acting to the right instead of to the left. However, as

we show in Section 4.1, doing the forward-propagation first is necessary when combining grape with
automatic differentiation.

Having evaluated ∇τ (k)
nl via Eq. (3), respectively Eq. (10), we find for the gradient of the square-

modulus functional in Eq. (2)

(∇JT,sm)nl ≡
∂JT,sm
∂εnl

= − 1
N2

N∑
k,k′=1

[
∂τ∗k′

∂εnl
τk + τ∗k′

∂τk
∂εnl

]
= − 2

N2 Re
N∑

k,k′=1
τ∗k′∇τ

(k)
nl . (11)

For other functionals [19], we would similarly have to compute the chain rule to complete the grape
scheme.

2.4 Krotov’s method
As an alternative to grape, Krotov’s method [14–16] takes a constructive approach based on time-
continuous control fields, J({εl(t)}) on the left-hand side of Eq. (1). For a specifically chosen running
cost, ga(εl(t)) = λa

S(t) [εl(t)− εrefl (t)]2, with an arbitrary “update shape” S(t) and scaling factor λa, and

a reference field εrefl (t) that is typically chosen in each iteration (i+ 1) as the guess field ε
(i)
l (t) for that

iteration, the derivation of Krotov’s method [17–20] considers the necessary and sufficient conditions

for the functional derivative ∂J
∂εl(t) to ensure monotonic convergence, J({ε(i+1)

l (t)}) ≤ J({ε(i)l (t)}), and

finds a first-order [20] update equation for ∆ε(i)l (t) ≡ ε(i+1)
l (t)− ε(i)l (t) in each iteration,

∆ε(i)l (t) = S(t)
λa

Im
[

N∑
k=1

〈
χ

(i−1)
k (t)

∣∣∣∣∣ ∂Ĥ
∂ε

(i)
l (t)

∣∣∣∣∣Ψ(i)
k (t)

〉]
, (12)

where |Ψk(t)〉 is the initial state |φk〉 forward-propagated with the updated pulse for the current

iteration, and |χ(i−1)
k (t)〉 is a state backward-propagated according to

∂

∂t
|χ(i−1)
k (t)〉 = −iĤ† |χ(i−1)

k (t)〉+ ∂gb

∂ 〈Ψ(i−1)
k (t)|

(13)

with the boundary condition

|χ(i−1)
k (T)〉 = − ∂JT

∂ 〈Ψ(i−1)
k (T)|

. (14)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 7

The discretization to a time grid is done only after formulating the time-continuous update equation
and results in the scheme shown in Fig. 1 (b). For each objective indexed by k, we start in the top
right with |χk(T)〉 defined by Eq. (14). This state is backward-propagated as

|χk(tn−1)〉 = e−iĤ†ndtn |χk(tn)〉 (15)

(dtn < 0) if there are no state-dependent running costs (gb ≡ 0), or using an inhomogeneous propagator
otherwise [90]. All backward-propagated states must be stored in memory. For each control field
indexed by l, the control update for the first time step is calculated according to Eq. (12) for t = 0,
i.e., using the result of the backward propagation and the initial state |φk〉 for each objective. The
updated controls for the first time step then allow to obtain |Ψk(t1)〉, which together with |χk(t1)〉
from the stored backward-propagated states allows to calculate the update for the second time step.
In this sense, the scheme is sequential : the update in every time step depends directly on the state
forward-propagated under the updated pulse from the previous time step. In contrast, the update in

grape is concurrent, with independent ∇τ (k)
nl . Like the grape scheme in panel (a), Krotov’s method

is inherently parallel in k, with the caveat that the parallelization must be synchronized after each
time step in the forward propagation, so as to evaluate the sum over k in Eq. (12).

3 Automatic Differentiation
Existing implementations of grape [23–26, 48] typically hard-code the optimization functional to
something equivalent to Eq. (2). In order to extend to more functionals, at best a user has to manually
supply a routine that calculates the gradient, for example, with a chain rule such as Eq. (11). In the
worst case, if the gradient is not easily expressed as overlaps τk, the numerical scheme in Fig. 1 (a)
would have to be adapted to that particular functional.

Even more problematic are figures of merit that are highly relevant to quantum engineering but do
not have an analytic gradient. Typical examples are entanglement measures [31] or the quantum Fisher
information [28] which is directly connected to metrological gain in quantum sensing applications [29,
30]. Evaluating these measures, in general, involves eigenvalue decompositions, which does not lend
itself to an analytical calculation of the gradient. Even if equivalent analytic expressions, e.g., for the
gate concurrence, can be found [34, 35], their analytic gradients are extremely tedious to calculate and
implement [91].

In situations where the analytic calculation of a gradient is impossible or impractical, the nu-
merical evaluation of gradients can be an alternative, in particular through automatic differentiation
(AD) [36–40, 43, 44]. The core of AD is the realization that any numerical computation, even one
that is seemingly non-analytical like an eigen-decomposition, can ultimately be expressed in elemental
numerical steps – sums and products of floating point numbers, if taken to the extreme of machine
instructions. These elemental steps have a known derivative, and thus the gradient of any function can
be evaluated by applying the chain rule ad nauseam. Doing this requires that the computer keep track
of all intermediate values in the computation. In our case, the function of interest is the optimization
functional J , with input values {εn} (we temporarily drop the index l numbering different controls
here for simplicity).

Consider
J(ε1, ε2) = sin(ε1) + ε1

√
ε2 (16)

as a simple example, borrowed from Ref. [37]. We introduce intermediary values, v1 = ε1, v2 = ε2,
v3 = sin(v1), v4 = √v2, v5 = v1v4, v6 = v3 + v5, and thus finally J = v6. The full chain rule for the
gradient of J is

(∇J)n ≡
∂J

∂εi
= ∂J

∂v6

∂v6

∂v3

∂v3

∂v1

∂v1

∂εn
+ ∂J

∂v6

∂v6

∂v5

∂v5

∂v1

∂v1

∂εn
+ ∂J

∂v6

∂v6

∂v5

∂v5

∂v4

∂v4

∂v2

∂v2

∂εn
. (17)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 8

There are two ways to write the chain rule recursively, allowing to consistently evaluate it numeri-
cally for arbitrarily complicated functionals. These correspond to the forward and reverse modes of
automatic differentiation.

For the forward mode, we define the “tangent” of an intermediary value as v̇j ≡ ∂vj/∂εn where we
have picked a particular εn for which we want to evaluate the derivative. We then find

v̇j =
∑
i

∂vj
∂vi

v̇i , (18)

where the sum is over all vi on which vj depends explicitly. We can evaluate these tangents along
with the evaluation of the intermediary values themselves. For the derivative with respect to ε1, in our
example, we would have v̇1 = 1, v̇2 = 0, v̇3 = cos(ε1), v̇4 = 0, v̇5 = √ε2, v̇6 = √ε2 + cos(ε1), which is
indeed ∂J/∂ε1. To calculate the full gradient, the entire calculation must be evaluated once for each εn.
Thus, calculating the gradient in forward-mode is efficient only if the number of dependent variables
is small. On the other hand, for a single dependent variable, the runtime and memory requirements
of evaluating the derivative are proportional to those of evaluating J itself. In particular, a tangent v̇j
does not have to be kept in memory longer than the value vj itself. This makes forward mode automatic
differentiation easy to implement, e.g., by using operator overloading and dual numbers [43].

For the reverse mode, we define the “adjoint” of an intermediary value as v̄j ≡ ∂J/∂vj . The name
“adjoint” in this context is unrelated to the Hermitian conjugate in quantum mechanics, denoted by
a dagger. The definition of the AD adjoint results in a recursive relationship

v̄j =
∑
i

v̄i
∂vi
vj

, (19)

where the sum is over all vi which depend on vj . Note that this is the reverse of Eq. (18). Consequently,
the adjoints are evaluated backward, starting from v̄6 = ∂J/∂v6 = 1. We then further find v̄5 = 1,
v̄4 = ε1, v̄3 = 1, v̄2 = ε1/(2

√
ε2) and v̄1 = cos(ε1) +√ε2. The final adjoints now contain the derivatives

for all of the input parameters. This is the primary benefit of reverse-mode AD: the full gradient can
be evaluated at once, making it the preferred method for calculating the gradient of an optimization
functional RNTL → R. However, we can only start the calculation of the adjoints once J itself has been
evaluated. All intermediary values vj must be stored together with information on which elemental
function was used to obtain the value, as well as all adjoints v̄j .

In practice, this can be implemented in several ways. Early versions of Tensorflow [53] require that
the entire calculation is set up as a computational graph, see Fig. 1 in Ref. [37]. A forward-pass through
the graph calculates the functional and stores intermediary values, while a backward-pass distributes
adjoint information to the parents of each node in the graph. Alternatively, a tabular representation
of the graph may be constructed during the forward pass, in what is called a Wengert tape. The
backward pass then adds adjoint information to the tape. Lastly, it is possible to transform the source
code of a function that evaluates the optimization functional into a new function that first performs the
original evaluation, and then inverts the computational steps, splicing in code to calculate the adjoints.
These implementation details can have a significant impact on the performance and flexibility; see [92]
for a discussion of the particular tradeoffs. However, they do not change the fundamental memory
requirements associated with reverse-mode AD.

There is considerable flexibility in what is considered an “elemental” function for which the adjoint
can be defined. Most importantly, linear algebra operations do not have to be handled at the level
of scalar operations, alleviating to some extent the overhead associated with AD. Using the rules of
matrix calculus [93, 94], AD adjoints for many operations can be defined [95]. This even includes
eigen- or svd decompositions [96].

The more high-level the elemental functions are, the less the numerical overhead of AD. However,
this comes at the cost of having to define more and more analytical adjoints. This is why many AD
frameworks have been slow to adopt operations that are outside of the narrow scope of machine learn-
ing, which only requires real-valued dense matrix-vector operations. In contrast, quantum dynamics

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 9

is inherently described with complex-valued state vectors, and operators are usually sparse. Defining
AD adjoints for complex linear algebra operations is possible [97], but has only recently seen adoption.
Another practical issue is that naively, the intermediary values (or vectors) vi are immutable. Thus,
most AD frameworks (including Zygote [60, 61], which we have used here) do not support in-place
linear algebra (blas [98]) operations, which can greatly speed up the simulation of quantum dynamics.

4 Semi-Automatic Differentiation
We now develop a method to eliminate the two shortcomings of reverse-mode automatic differentia-
tion: the excessive memory overhead associated with having to store the full computational graph,
respectively, a Wengert tape, and the limited support in AD frameworks for the linear algebra opera-
tions relevant to simulating the dynamics of a quantum system. We do this by applying an analytic
chain rule to the calculation of the gradient. To this end, we introduce intermediary variables zj and
rewrite the functional in terms of these intermediaries, J({εnl})→ J({zj({εnl})}). The values zj may
be complex, which requires some care when writing out the chain rule.

In principle, one must separate the zj into real and imaginary part as independent variables,
J = J({Re[zj]}, {Im[zj]}), resulting in

(∇J)nl ≡
∂J

∂εnl
=
∑
j

(
∂J

∂Re[zj]
∂Re[zj]
∂εnl

+ ∂J

∂Im[zj]
∂Im[zj]
∂εnl

)
. (20)

An elegant alternative is to introduce Wirtinger derivatives,

∂J

∂zj
≡ 1

2

(
∂J

∂Re[zj]
− i ∂J

∂Im[zj]

)
, (21)

∂J

∂z∗j
≡ 1

2

(
∂J

∂Re[zj]
+ i ∂J

∂Im[zj]

)
=
(
∂J

∂zj

)∗
, (22)

which instead treats zj and the conjugate value z∗j as independent variables, so that

∂J

∂εnl
=
∑
j

(
∂J

∂zj

∂zj
∂εnl

+ ∂J

∂z∗j

∂z∗j
∂εnl

)
= 2Re

∑
j

∂J

∂zj

∂zj
∂εnl

. (23)

The derivative of the complex value zj with respect to the real value εnl is defined straightforwardly
as

∂zj
∂εnl

≡ ∂Re[zj]
∂εnl

+ i∂Im[zj]
∂εnl

. (24)

Our goal is to choose parameters zj so that ∂J/∂zj can be calculated with automatic differentiation
with minimal numerical effort. That is, we would like the computational graph for J({zj}) to be as
small as possible. Additionally, if the number of parameters {zj} can be kept small, forward-mode
differentiation or even the use of finite difference may become feasible. For the second part of the chain
rule, we require that ∂zj/∂εnl can be calculated analytically (without the use of AD).

Software frameworks for automatic differentiation such as Zygote [61] and Tensorflow [53] may
define a (mathematically questionable [94]) “gradient” of a real-valued function J with respect to a
complex vector with elements zj as

(∇zJ)j ≡
∂J

∂Re[zj]
+ i ∂J

∂Im[zj]
. (25)

This differs from the Wirtinger derivatives by a factor of two. Thus,

∂J

∂zj
= 1

2(∇zJ)∗j (26)

in Eq. (23) when using, e.g., Zygote’s gradient function for ∇zJ .

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 10

4.1 State functionals
As a starting point, we can take seriously the explicit dependency of JT on {|Ψk(T)〉} in Eq. (1) and
write the gradient of JT using the chain rule in the states. To do this, we must combine the Wirtinger
derivative with the rules of matrix calculus [93, 94], and write

(∇JT)nl ≡
∂JT
∂εnl

= 2Re
∑
k

(
∂JT

∂ |Ψk(T)〉
∂ |Ψk(T)〉
∂εnl

)
. (27)

With the definition in Eq. (21), this corresponds directly to the scalar

∂JT
∂εnl

=
∑
km

(
∂JT

∂Re[Ψkm]
∂Re[Ψkm]
∂εnl

+ ∂JT
∂Im[Ψkm]

∂Im[Ψkm]
∂εnl

)
, (28)

where Ψkm = 〈m |Ψk(T)〉 for any orthonormal basis {|m〉} corresponds to the zj in Eq. (20).
In Eq. (27), we may now recognize that the derivative of the scalar JT with respect to a column

vector |Ψk(T)〉 results, according to the rules of matrix calculus, in a row vector that we may associate
with a co-state 〈χk|. Specifically, we may define

|χk(T)〉 ≡ − ∂JT
∂ 〈Ψk(T)| ⇔ 〈χk(T)| ≡ − ∂JT

∂ |Ψk(T)〉 , (29)

with a minus sign that will be motivated in Section 4.5. Since |χk(T)〉 does not depend on εnl, we may
push it into the derivative and obtain

∂JT
∂εnl

= −2Re
∑
k

∂

∂εnl
〈χk(T) |Ψk(T)〉 . (30)

We can now see that the term under the sum has the exact same form as Eq. (3), that is, the derivative
of a complex overlap of two states, τk ≡ 〈χk(T) |Ψk(T)〉, which we know how to evaluate numerically
via Eq. (10), respectively the scheme in Fig. 1 (a). The only difference is that in the original grape,
we initialize the extended state |χ̃k(T)〉 for the backward propagation from the target state, whereas
now we initialize it with Eq. (29). This also explains why we have chosen to perform the forward-
propagation first in Fig. 1 (a): while in the original grape, backward and forward propagation are
interchangeable, now we need the result |Ψk(T)〉 of the forward propagation in order to initialize the
backward propagation.

We can use automatic differentiation to evaluate Eq. (29) for arbitrary functionals. For example,
with Zygote’s gradient function to evaluate ∇Ψk

JT analogously to Eq. (25), we have

|χk(T)〉 = −1
2∇Ψk

JT , (31)

where the factor 1
2 accounts for the difference between the complex gradient and the correct Wirtinger

derivative, cf. Eq. (26).

4.2 Overlap functionals
When formulating the gradient for the square-modulus functional in Eq. (11), we already used the
overlap of the forward-propagated state for the k’th objective with the target state for that objective,
τk ≡

〈
φtgtk

∣∣Ψk(T)
〉
. Many of the most common functionals in quantum control are expressed in terms

of overlaps of propagated states with target states [19]. We can exploit this to further analytically
simplify the calculation of |χk(T)〉 in Eq. (29) via automatic differentiation. We find

|χk(T)〉 = − ∂JT
∂ 〈Ψk(T)| = −

(
∂JT
∂τ∗k

∂τ∗k
∂ 〈Ψk(T)|

)
= −1

2 (∇τk
JT) |φtgtk 〉 , (32)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 11

where we have used that only the complex conjugate τ∗k =
〈
Ψk(T)

∣∣φtgtk 〉 of the overlap depends
explicitly on the co-state 〈Ψk(T)|. The gradient ∇τk

JT defined as in Eq. (26) can be obtained with
automatic differentiation.

We note that for functionals that explicitly depend on overlaps [19], it is generally not difficult to
evaluate the chain rule analytically. Thus, the use of automatic differentiation here is less a matter
of necessity than of convenience. It allows us to implement a grape optimization package where the
user can pass an arbitrary functional JT ({τk}) without having to explicitly specify a gradient.

4.3 Gate functionals
For the optimization of quantum gates, such as the examples we will explore in Section 5, it is common
to have a logical subspace embedded in a larger physical subspace. The functional JT in this case can
often be written as a function of the achieved gate ÛL in the logical subspace.

In this context, ÛL is the projection of the full time evolution operator Û to the logical subspace.
Specifically, the entries of the matrix ÛL are

(ÛL)ij = 〈φi |Ψj(T)〉 ⇔ (ÛL)∗ij = 〈Ψj(T) |φi〉 , (33)

where {|φi〉} are the basis states that span the logical subspace (assumed to be the initial states for
the optimization objectives), and each |Ψj(T)〉 is the result of forward-propagating |φj〉.

We may then calculate the gradient of JT as in Eqs. (29, 30), with a further analytic chain rule,
just as in Section 4.2 but with the elements (UL)ij instead of the complex overlaps τk:

|χk〉 ≡ −
∂JT

∂ 〈Ψk(T)| = −
∑
ij

∂JT
∂ (UL)∗ij

∂ (UL)∗ij
∂ 〈Ψk(T)| , (34)

again using the notation of the Wirtinger derivative. We have used that only (UL)∗ij depends explicitly
on the co-states {〈Ψk(T)|}. Furthermore,

∂JT
∂ (UL)∗ij

= 1
2(∇UL

JT)ij (35)

according to the definitions in Eqs. (25, 22), and

∂ (UL)∗ij
∂ 〈Ψk(T)| = ∂

∂ 〈Ψk(T)| 〈Ψj(T) |φi〉 = δjk |φi〉 (36)

with the Kronecker delta δjk. Thus, Eq. (34) simplifies to

|χk〉 = −1
2
∑
i

(∇UL
JT)ik |φi〉 , (37)

where ∇ULJT is evaluated via automatic differentiation, e.g. with Zygote’s gradient function.
While the simplified Eqs. (32, 37) are not fundamentally different from constructing the boundary

states {|χk〉} directly with automatic differentiation, they can help to circumventing numerical insta-
bilities that an AD framework may have for complicated functionals. Also, for very large Hilbert space
dimensions, it may eliminate some of the numerical overhead associated with automatic differentiation.
While the direct construction of |χk〉 requires differentiation in a number of variables proportional to
the full Hilbert space dimension, using Eq. (32) reduces this to the dimension of the logical subspace,
4 complex numbers in the case of a two-qubit gate. Similarly, for Eq. (37) we have a reduction to the
square of the dimension of the logical subspace, that is, 16 complex numbers for a two-qubit gate.

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 12

4.4 Running costs
So far, we have only discussed the evaluation of gradients for final time functionals JT . We now extend
the discussion of semi-automatic differentiation to the running costs ga,b in Eq. (1). Since we are
considering piecewise constant pulses, the integral over the running cost turns into a sum over the
time steps. That is, we rewrite Eq. (1) as

J({εnl}) = JT ({|Ψk(T)〉}) +
NT∑
n=1

∑
l

(ga)nl +
NT∑
n=0

(gb)n , (38)

with

(ga)nl = 1
dtn

ga(εnl, dtn) , (gb)n = 1
∆tn

gb({|Ψk(tn)〉}, tn) . (39)

As in Fig. 1, we define |Ψk(tn)〉 = Ûn . . . Û1 |φk〉, t0 = 0, tNT
= T , and Ûn = exp[−iĤndtn] as the time

evolution operator for the n’th time interval, dtn = tn − tn−1. Similarly, ∆tn is the time step around
the time grid point tn, e.g. ∆t0 = dt1, ∆tn = 1

2 (tn+1 − tn−1) for 1 ≤ n < NT , and ∆tNT
= dtNT

. For
uniform time grids, dtn ≡ ∆tn ≡ dt.

Typically, running costs on the control fields are direct analytic expressions, e.g., ga({εnl}) = λaε
2
nl

to penalize large amplitudes, with a weight λa. Thus, they are easily included in the gradient, e.g.,
(∇ga)nl = 2λaεnl. For convenience, this can also be done with automatic differentiation. This even
extends to penalties on the first and second derivatives of the controls [37–39].

More interesting is the case of state-dependent constraints. Typical examples [99] include trajectory
optimizations,

gb,trj({|Ψk(tn)〉}) = λb
∑
k

∥∥|Ψk(tn)〉 − |Ψtgt
k (tn)〉

∥∥2
, (40)

where the time evolution of each state |Ψk(tn)〉 should be close to some target evolution |Ψtgt
k (tn)〉

with a weight λb, or observable optimizations

gb,D̂(t)({|Ψk(tn)〉}) = λb
∑
k

〈
Ψk(tn)

∣∣∣ D̂(tn)
∣∣∣Ψk(tn)

〉
, (41)

where the expectation value of some observable D̂(t) is to be minimized. A special case of this is the
minimization of the population in some forbidden subspace [100], where D̂(tn) ≡ D̂ is a projector into
that subspace.

To obtain the full gradient of a functional with a state-dependent running cost, we apply the same
procedure as in Section 4.1 and find

∂J

∂εnl
= 2Re

∑
k

[
∂JT

∂ |Ψk(T)〉
∂ |Ψk(T)〉
∂εnl

+
NT∑
n′=0

∂ (gb)n′
∂ |Ψk(tn′)〉

∂ |Ψk(tn′)〉
∂εnl

]
(42a)

= −2Re
∑
k

∂

∂εnl

[〈
χ

(T)
k

∣∣∣ ÛNT
. . . Û1

∣∣∣φk〉+
NT∑
n′=n

〈
ξk(tn′)

∣∣∣ Ûn′ . . . Û1

∣∣∣φk〉] (42b)

with

|χ(T)
k 〉 ≡ −

∂JT
∂ 〈Ψk(T)| , |ξk(tn′)〉 ≡ −

∂ (gb)n′
∂ 〈Ψk(tn′)|

, (43)

cf. Eqs. (14, 29). In the sum over n′ in Eq. (42b), we have used that |Ψk(tn′)〉 depends on εnl only for
n′ ≥ n. This implies that for the final time interval, n = NT , there is only a single term,

∂J

∂εNT l
= −2Re

∑
k

〈
χk(T)

∣∣∣∣∂ÛNT

∂εNT l

∣∣∣∣Ψk(tNT−1)
〉
, (44)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 13

with

|χk(T)〉 ≡ |χ(T)
k 〉+ |ξk(T)〉 = −

(
∂JT

∂ 〈Ψk(T)| + ∂ (gb)NT

∂ 〈Ψk(T)|

)
. (45)

Evaluating the gradient progressively backward in time for n = (NT −1) . . . 1, we then find a recursive
relationship

∂J

∂εnl
= −2Re

∑
k

〈
χk(tn)

∣∣∣∣∂Ûn
∂εnl

∣∣∣∣Ψk(tn−1)
〉
, (46)

with

|χk(tn)〉 = Û†n+1 |χk(tn+1)〉 − ∂ (gb)n
∂ 〈Ψk(tn)| . (47)

Thus, there are no fundamental changes to the scheme in Fig. 1 (a) in the presence of state-
dependent running costs. The states {|φk〉} must be forward-propagated and stored, and then the
extended states |χ̃k(tn)〉 are propagated backward to produce the gradient. The only difference is that
the boundary state |χ̃k(T)〉 is now constructed based on Eq. (45) instead of Eq. (29) (or the target
states, in the original grape). Furthermore, the backward-propagation uses the discrete inhomoge-
neous Eq. (47). The inhomogeneity is calculated using the forward-propagated states stored previously,
with the derivative of gb performed analytically or by automatic differentiation.

4.5 Semi-AD for Krotov’s method and time-continuous schemes
We have included a minus sign in the definition of |χk(T)〉, Eq. (29), respectively |χ(T)

k 〉 in Eq. (43),
since that results in the exact same definition as the |χk(T)〉 that is the boundary condition for the
backward propagation in Krotov’s method, Eq. (14). This allows us to make a strong connection
between the most general case of semi-automatic differentiation for grape and for Krotov’s method.

Evaluating Eq. (31) with a framework for automatic differentiation like Zygote or Tensorflow is
all that is required to bring the concept of semi-automatic differentiation to Krotov’s method. In
this way, it becomes possible to use Krotov’s method to optimize towards any computable functional.
Conversely, for functionals where the derivative with respect to the states is known analytically, e.g.,
because they have already been explored using Krotov’s method, that existing code can be shared
between an implementation of grape and Krotov’s method.

We may also observe that the generalization of grape and Krotov’s method are even more closely

related in the time-continuous limit. For dt→ 0, we may use the first-order Taylor expansion of e−iĤndt

to find

∇JT ≈ −2 dt Im
[

N∑
k=1

〈
χ

(i−1)
k (t)

∣∣∣∣∣ ∂Ĥ
∂εl(t)

∣∣∣∣∣Ψ(i−1)
k (t)

〉]
, (48)

with the boundary condition of Eq. (29) for |χk(T)〉. With ∆ε(t) ∝ −∇JT , this matches Krotov’s

update equation (12), up to the concurrent |Ψ(i−1)
k (t)〉 in Eq. (48) replacing the sequential |Ψ(i)

k (t)〉 in
Eq. (12).

Similarly, if there are state-dependent constraints gb 6≡ 0 in Eq. (1), the time-continuous limit of
Eq. (46) for the backward propagation in the semi-AD grape method corresponds directly to the
inhomogeneous Eq. (13) for the backward-propagation in Krotov’s method. However, the former does

not require a genuine inhomogeneous propagator [90]: the operator Û†n+1 in Eq. (46) is a normal time
evolution operator, with the inhomogeneity added afterward.

Equation (48) may provide an alternative implementation of a generalized grape scheme in the
limit of very small dt. The scheme would be nearly identical to Fig. 1 (b); instead of calculating the
pulse update directly, it would calculate the gradient ∇JT and feed it into the l-bfgs-b optimizer.
Considering the time evolution operator only to first order in dt avoids having to construct and propa-
gate the extended state discussed in Section 2.3 and may thus be slightly faster. Finally, Eq. (48) may
also provide a motivation for the exploration of optimization schemes that mix and match sequential
and concurrent updates [24, 99].

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 14

4.6 Asymptotic memory usage and checkpointing
We can now analyze the asymptotic memory usage of the semi-automatic differentiation procedure in
relation to the “full” use of automatic differentiation as in Refs. [36–40] in general terms. As discussed
in Section 3, automatic differentiation in general requires the storage of any intermediate value in
the evaluation of the functional, that is, the time propagation of the quantum states. Thus, the AD
memory overhead depends very much on how exactly this propagation is implemented.

In many of the existing uses of AD for quantum control, the time propagation is achieved by
exponentiating the Hamiltonian. The required storage if this exponentiation is performed in a single
computational step has been analyzed in Ref. [101]. The intermediary values in this case are the time
evolution operators, i.e., the exponentiated matrices, and the states resulting from the application of
those time evolution operators, for every time step. For a Hilbert space dimension of NH , the size of
the matrices is N2

H . The required storage for these matrices is thus proportional to NTN
2
H where NT

is the number of time steps. Asymptotically, this dominates over the storage required for the states,
which is proportional to NTNH .

While matrix exponentiation in a single step minimizes the number of intermediary values in the
computation graph and thus the AD memory overhead, the computational complexity for algorithms
for matrix exponentiation scales polynomially in matrix-matrix multiplications, which themselves scale
quite unfavorably as N3

H . In contrast, expanding the time evolution operator in a polynomial series
and applying it directly to the states, e.g., using the Chebychev propagation method outlined in
Section 2.3 reduces the computational complexity to something polynomial in matrix-vector products,
which scale as N2

H . However, in the context of AD, the polynomial expansion also increases the number
of intermediary states. Specifically, for a polynomial of order M , there are M intermediary matrices
and M intermediary states, and thus the total asymptotic memory overhead increases by a factor of
M . Typically, the M required for convergence of the polynomial is between 10 and 100, depending on
the spectral radius of the Hamiltonian and the size of the time step.

A well-established technique to reduce the excessive memory overhead of automatic differentia-
tion by trading it for an increase in runtime is the use of checkpointing [44]. The central idea of
checkpointing is to store only periodic snapshots of the intermediate variables in the computation
graph, and then recalculate the forward pass from the last available checkpoint when calculating the
gradient via automatic differentiation. This idea has been applied to the use of automatic differen-
tiation in GRAPE [101]. A snapshot is taken every C =

√
NT time steps in the propagation. The

asymptotic memory usage in this case reduces from NTN
2
H to (NC + C)N2

H = 2
√
NTN

2
H , where

NC = NT /C is the number of checkpoints. That is, checkpointing achieves a quadratic reduction
with respect to the number of time steps. With a polynomial propagator, we again have an increase
by a factor of M within each checkpointed segment of size C, thus resulting in a memory scaling of
(NC +MC)N2

H ≈M
√
NTN

2
H , again a quadratic reduction.

The fundamental idea of checkpointing can also be applied in the semi-AD scheme in Fig. 1 (a).
By default, we store all the forward propagated states marked in red. Instead, we may store only every
C states. During the backward propagation of |χ̃k(T)〉, we then repeat the forward propagation from
the last available checkpoint to recover that states |Ψk(tn)〉 required for the overlaps that determine

∇τ (k)
ln . The required memory for storage is thus reduced from NT to NC + C = 2

√
NT . However, we

need an additional NT −NC = NT −
√
NT propagation steps.

Lastly, we can consider the special case of unitary dynamics. No storage at all is required in
the semi-AD scheme: after the initial forward propagation in Fig. 1 (a), the resulting |Ψk(T)〉 can
simply be backward-propagated in parallel with |χ̃k(T)〉. Thus, we trade the need for storage with a
full additional time propagation. The method is not applicable in open quantum systems where the
dynamics are not unitary, and thus a backward propagation of |Ψk(T)〉 does not recover the states
|Ψk(tn)〉 from the forward propagation. The unitary dynamics can be exploited in the same way to
reduce the storage in a full-AD implementation of GRAPE [101].

The asymptotic memory requirement for both full-AD and semi-AD for different propagators and
with and without checkpointing is summarized in Table 1. It is important to point out that for semi-

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 15

Full-AD Full-AD Full-AD Full-AD Semi-AD Semi-AD
prop. meth. exp. exp. polyn. polyn. any any
checkpoint X X X

matrix (N2
H) NT NC + C MNT NC +MC 0 0

vector (NH) NT NC + C MNT NC +MC NT NC + C

mem (O) NTN
2
H (NC + C)N2

H MNTN
2
H (NC +MC)N2

H NTNH (NC + C)NH

Table 1: Asymptotic memory usage for full automatic differentiation (Full-AD) and semi-automatic differentiation
(Semi-AD). The table shows how the number of matrices and vectors that must be stored in memory scales with
the size of the Hilbert space NH and the number of time steps NT . For full-AD, we compare propagation via matrix
exponentiation (“exp.”) and propagation via a polynomial method (“polyn.”), such as the Chebychev polynomials
detailed in section 2.3. In this case M is the order of the polynomial required for convergence, equal to the number
of matrix-vector products in a propagation step. Also included is the number of matrices/states that need to be
stored when checkpointing is used. C denotes the time steps between checkpoints, and NC = NT /C is the number
of checkpoints. The bottom row shows the total asymptotic scaling of the required memory.

AD, the memory requirement is determined only from the storage of states, and is thus linear both
in the Hilbert space dimension and in the number of time steps. The remaining use of automatic
differentiation to evaluate ∇Ψk

JT in Eq. (31), ∇τk
JT in Eq. (32), or ∇UL

JT in Eq. (37) is negligible
in comparison. At worst, for ∇Ψk

, it is a constant number of states. At best, for ∇τk
, it is a small

number of scalars.
In practice, the memory and runtime characteristics of full-AD may be less predictable. Many AD

frameworks have large constant overhead and large prefactors for the asymptotic scaling in Table 1.
On the other hand, the size of the computational graph and thus the amount of memory required for
AD depend heavily on the exact implementation details of the time propagation. Therefore, we will
explore the scaling of memory and runtime empirically for a specific implementation and a realistic
example in Section 5.

As discussed in Section 3, there is a certain freedom to define what operations constitute “ele-
mentary operation”, with a known pre-defined adjoint. For example, at least in principle it would be
possible to define an entire propagation step via Chebychev expansion as a single node in the compu-
tational graph. This would eliminate the scaling with the number of coefficients M , but would require
to implement a custom adjoint for that propagation step, which is not trivial. Custom adjoints would
have to be implemented by hand for every different propagation method.

In general, any use of automatic differentiation involves a trade-off between memory usage, runtime,
and code complexity (with custom adjoints). We believe that semi-automatic differentiation is a
particularly attractive balance of these three goals: It is strictly linear in the number of time steps
and the dimension of the Hilbert space, its runtime and structure match that of a traditional GRAPE
implementation without any AD capabilities, and it requires no implementation of any custom adjoints,
which may otherwise achieve similar memory scaling. Specifically, it works with any propagation
method without modification; the runtime of the optimization is directly proportional to the runtime
of the time propagation.

5 Optimizing Gate Concurrence for Two Coupled Transmons
5.1 Two-Qubit Gates on Transmons with a Shared Transmission Line
As an example to benchmark the semi-automatic differentiation approach to optimal control we con-
sider two superconducting transmon qubits [72] with a shared transmission line [73] (“cavity”) that
allows to control the system via microwave pulses. Each transmon qubit is an anharmonic Duffing

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 16

left qubit frequency ω1 = 4.380 · 2πGHz
right qubit frequency ω2 = 4.614 · 2πGHz
rotating frame (drive) frequency ωd = 4.498 · 2πGHz
left qubit anharmonicity α1 = 210 · 2πMHz
right qubit anharmonicity α1 = 215 · 2πMHz
effective qubit-qubit coupling J = -3 · 2πMHz
relative coupling strength λ = 1.03

Table 2: Parameters for the system of two coupled transmon qubits.

oscillator that couples to the transmission line. In the dispersive limit, where the qubit-cavity de-
tuning dominates the coupling strength, the cavity can be eliminated. This results in an effective
two-transmon Hamiltonian with a static qubit-qubit coupling. Furthermore, a microwave control field
with a frequency ωd near the qubit frequencies ω1, ω2 drives transitions on the transmons. In the
rotating-wave approximation, the effective Hamiltonian reads [102]

Ĥ = Ĥ0 + Ωre(t)Ĥd,re + Ωim(t)Ĥd,im (49a)

with (~ = 1)

Ĥ0 =
∑
q=1,2

[(
ωq − ωd + αq

2

)
b̂†qb̂q −

αq
2 (b̂†qb̂q)2

]
+ J

(
b̂†1b̂2 + b̂1b̂†2

)
(49b)

Ĥd,re = 1
2

[
(b̂†1 + b̂1) + λ(b̂†2 + b̂2)

]
(49c)

Ĥd,im = i
2

[
(b̂†1 − b̂1) + λ(b̂†2 − b̂2)

]
(49d)

where b̂†q and b̂q are the creation and annihilation operators for the transmon excitations. Transmon
qubits can be engineered to a wide range of frequencies, anharmonicities, and coupling strengths [103].
Here, we use the parameters listed in Table 2, cf. Ref. [35], as a typical example.

The control field in general is complex-valued, corresponding to variations in both the amplitude
and phase relative to the rotating frame; it is easiest to split it into real and imaginary parts and treat
them as independent controls Ωre(t) and Ωim(t), as we have done above.

The Hamiltonian in Eq. (49) is well-suited as a system on which to benchmark optimal control
methods for quantum gates. First, the system is fully controllable, allowing to implement any two-
qubit gate if no further restrictions are placed on the control field [34, 104]. Second, entangling quantum
gates have been demonstrated with gate durations anywhere between 20 ns and 5 µs [35, 103, 105, 106].
Thus, we can reasonably explore the numerical scaling of the optimization procedure with the number
of time steps. Lastly, the number of levels in the anharmonic oscillator that reasonably contribute
to the gate dynamics varies significantly depending on the gate mechanism and the amplitudes and
frequencies of the control field [106]. This allows us to benchmark the optimization for varying Hilbert
space sizes. Especially for non-analytic controls obtained with optimal control, leakage from the logical
subspace can be a significant problem, and we include as many as Nq = 15 levels in the numerical
simulation to account for this.

5.2 Optimization Functionals
A primary benefit of the semi-automatic differentiation is that it allows optimizing arbitrary figures of
merit, including ones for which it is difficult or impossible to derive analytical gradients. This freedom
can significantly enhance the effectiveness of optimal control. For example, in the context of entangling
quantum gates, it was demonstrated that optimizing for an arbitrary perfectly entangling quantum
gate is easier than optimizing for a specific entangling gate such as CNOT [34, 35]. This is because for

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 17

a given Hamiltonian it is not known a priori which perfect entangler will be easiest to implement with
given resources such as a maximum power of the control pulse. At the same time, for the realization of
a universal quantum computer, one perfect entangler together with arbitrary single-qubit operations
is sufficient.

The entangling power of a quantum gate is measured by the gate concurrence, defined as the max-
imum concurrence that can be obtained by applying the quantum gate to a separable input state [31].
It can be evaluated by writing a two-qubit gate ÛL (a 4×4 matrix in the logical subspace) in a Cartan
decomposition [32],

ÛL = k̂1 exp
[

i
2 (c1 σ̂xσ̂x + c2 σ̂yσ̂y + c3 σ̂zσ̂z)

]
k̂2 , (50)

where σ̂x,y,z are the Pauli matrices, k̂1,2 are single-qubit operations, and c1,2,3 are real-valued coef-
ficients that characterize the two-qubit aspect of the quantum gate. When eliminating symmetries
in Eq. (50), the coefficients can be understood as coordinates in a geometric representation of two-
qubit gates called the Weyl chamber. A gate is a perfect entangler with a gate concurrence C = 1 if
c1 + c2 ≥ π

2 , c1− c2 ≤ π
2 , and c2 + c3 ≤ π

2 , which is a polyhedron within the Weyl chamber. Otherwise,

C(ÛL) = max |sin(c1,2,3 ± c3,1,2)| , (51)

cf. Ref. [31]. The calculation of the Weyl chamber coordinates themselves is described in Ref. [107] and
implemented in Refs. [108, 109] and involves obtaining the eigenvalues of ÛL, as well as a branch selec-
tion of a complex logarithm. Thus, the evaluation of Eq. (51) is inherently non-analytical, preventing
the analytic construction of a gradient ∇C with respect to the control values.

For this reason, a less direct measure for the entangling power of the quantum gate was developed in
Refs. [34, 35]. Intuitively, it minimizes the geometric distance from the polyhedron of perfect entanglers
in the Weyl chamber. Mathematically, that distance is formulated not in terms of the Weyl chamber
coordinates, but in terms of the Makhlin local invariants g1,2,3 [110]. Similarly to the Weyl chamber
coordinates, these characterize two-qubit gates up to single-qubit operations. It can be shown that the
geometric distance to the polyhedron of perfect entanglers is

DPE(ÛL) = g3

√
g2

1 + g2
2 − g1 . (52)

Unlike the Weyl chamber coordinates, the local invariants can be calculated analytically from the
two-qubit gate ÛL as

g1 = 1
16Re

[
tr2(m̂)

]
, g2 = 1

16Im
[
tr2(m̂)

]
, g3 = 1

4
[
tr2(m̂)− tr(m̂2)

]
, (53)

with m̂ = ÛTBÛB, where ÛB is the representation of ÛL in the Bell basis. Applying matrix calculus,
it is possible – although both tedious and lengthy – to calculate an analytic gradient of Eq. (52) [91].
For the derivative with respect to a state, cf. Eqs. (14, 29), a Python implementation is available in
Ref. [108].

Both C(ÛL) and DPE(ÛL) are only well-defined if ÛL is unitary. To ensure this in the optimization,
we may add a term that calculates the loss of population from the logical subspace,

ploss(ÛL) = 1− 1
4tr
[
Û†LÛL

]
. (54)

Altogether, we use the following three optimization functionals:

1. Square-modulus gate optimization (SM)

JT,sm({τk}) = 1−
∣∣∣14

4∑
k=1

〈
φtgtk

∣∣Ψ(T)
〉︸ ︷︷ ︸

≡τk

∣∣∣2 = 1− 1
16

4∑
k=1

4∑
k′=1

τ∗k′τk , (55)

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 18

cf. Eq. (2), where |φtgtk 〉 is the result of applying the target gate

Ô =
√

iswap ≡

1 0 0 0
0 1√

2
i√
2 0

0 i√
2

1√
2 0

0 0 0 1

 (56)

to the initial states |φ1〉 = |00〉, |φ2〉 = |01〉, |φ3〉 = |10〉, |φ4〉 = |11〉 spanning the logical
subspace. The choice of

√
iswap as the target gate is somewhat arbitrary, although it has been

demonstrated that this is an easily reachable gate for the Hamiltonian in Eq. (49) [35].

2. Perfect entangler optimization (PE)

JT,PE(ÛL) = 1
2

(
1−DPE(ÛL)

)
+ 1

2ploss(ÛL) , (57)

where DPE and ploss are defined in Eq. (52) and Eq. (54), respectively.

3. Concurrence optimization (C)

JT,C(ÛL) = 1
2

(
1− C(ÛL)

)
+ 1

2ploss(ÛL) , (58)

where C and ploss are defined in Eq. (51) and Eq. (54), respectively. This is an example of a
non-analytic functional whose gradient can only be evaluated via automatic differentiation.

5.3 Benchmarks
The result of benchmarking the functionals in Section 5.2 with semi-automatic and full automatic
differentiation is shown in Fig. 2. The “Semi-AD” optimization uses the approach described in Sec-
tion 4.2 for the gate optimization with the square-modulus functional (SM), and the approach described
in Section 4.3 for the perfect-entanglers (PE) and concurrence (C) optimizations, as indicated by the
argument on the left-hand-sides of Eqs. (55–58). The resulting optimized control fields are similar
to those obtained in Ref. [35], and are shown in the “PE” examples in the online documentation
of the GRAPE.jl and Krotov.jl packages [69, 70], which implement both the direct and semi-AD
optimization methods.

All of the optimizations use an expansion in Chebychev polynomials for the time propagation,
Eq. (7). We compare this with an optimization using full automatic differentiation (“Full-AD”). This
means that we simply propagate the set of initial states with an AD-aware ode solver, the Runge-Kutta
algorithm dp5 [111] in DifferentialEquations.jl [112] and then evaluate the functional within the
Zygote AD framework [61]. As an alternative to the general ode solver, we also benchmark a full-AD
variant of the Chebychev propagator. In this implementation, in-place linear algebra operations must
be avoided, adding runtime overhead due to the allocation and deallocation of memory, cf. panels (e,
f). It is possible to do this within Zygote without too much numerical overhead due to the simplicity
of Eqs. (7, 8). Of course, the propagator is also limited to standard Hermitian dynamics. Lastly, as a
baseline, we benchmark the direct optimization of the square-modulus functional for a

√
iswap gate

with the analytic gradient in Eq. (11), that is, without any use of automatic differentiation (“Direct
(Cheby) (SM)”).

In the left column, panels (a, c, e), we vary the number of levels at which we cut off the transmon
qubit between Nq = 3 and Nq = 15 levels, which we show in terms of the Hilbert space size, NH = N2

q

for two transmons. The gate duration is constant at 100 ns. In the right column, panels (b, d, f), we
vary the gate duration between 20 ns and 800 ns while keeping the number of transmon levels constant
at 5 (NH = 25). The step size of the time grid is 0.1 ns, so that the number of time steps in the scheme
of Fig. 1 (a) is directly proportional to the gate duration and varies between 200 and 8000 steps.

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 19

0

200

400

600

ru
nt

im
e

pe
rg

ra
d

ev
al

(s
)

(a)
Fu

ll-
AD

(O
DE

)

Full-AD (Cheby)Semi-AD (Cheby)

9 100 225
0

10

20
(b)

Full-AD (ODE)

Full-AD (Cheby)Semi-AD (Cheby)

0 400 800
0

10

20

0

2000

4000

6000

8000

pe
ak

RA
M

us
ag

e
(M

B)

(c)

Full-A
D (Cheby)

Full-AD (ODE)
Semi-AD (Cheby)

9 100 225
50

100

150
(d)

Full-AD (Cheby)

Full-AD (ODE)

Semi-AD (Cheby)

0 400 800
50

100

150

0 50 100 150 200
Hilbert space size

0.0

1.0

2.0

3.0

4.0

al
lo

c
pe

rg
ra

d
ev

al
(M

B)

×105 (e)

Fu
ll-A

D
(O

DE)

Full-AD (Cheby)

Semi-AD (Cheby)

9 100 225
0

30

60

0 200 400 600 800
gate duration (ns), number of time steps (10)

(f)

Full-A
D (ODE)

Full-AD (Cheby)
Semi-AD (Cheby)

0 400 800
0

30

60

Semi-AD (Cheby) (PE)
Full-AD (Cheby) (PE)
Full-AD (ODE) (PE)

Semi-AD (Cheby) (C)
Full-AD (Cheby) (C)
Full-AD (ODE) (C)

Semi-AD (Cheby) (SM)
Full-AD (Cheby) (SM)
Full-AD (ODE) (SM)
Direct (Cheby) (SM)

Figure 2: Benchmarks for 10 iterations of a GRAPE optimization of entangling gates on two coupled transmons for
different functionals and different usage of automatic differentiation. The top row shows the optimization runtime
in seconds per evaluation of the gradient (forward propagation of the basis states and backward propagation of
the extended gradient-states); the center row shows the median peak RAM usage in megabyte from up to 20
optimization runs, where the insets also indicate the range of peak RAM usage as shaded areas; and the bottom
row shows the memory allocations per gradient evaluation in megabyte. The left column shows how these quantities
vary with the size of the Hilbert space; the right column shows the data for different gate durations in nanoseconds.
This is directly proportional to the number of time steps (dt = 0.1 ns). Each panel shows the performance of an
optimization towards a perfect entangler in the Weyl chamber (PE) or by maximizing the gate concurrence (C)
directly. Additionally, the data for the optimization of a

√
iSWAP gate via a square-modulus (SM) functional is

shown. The dynamics are simulated by evaluating the time evolution operator in Chebychev polynomials (“Cheby”),
or by using a generic ODE solver. The gradient is evaluated either via semi-automatic differentiation (“Semi-AD”) for
the PE and C optimizations or via a set over overlaps {τk} for the SM optimization, via full automatic differentiation
(“Full-AD”), or – for the “Direct” optimization – using an analytic gradient (no automatic differentiation).

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 20

For each optimization, we run the optimization for 10 iterations. At a minimum, each iteration
includes one evaluation of the gradient as depicted in Fig. 1 (a), that is, a forward propagation of the
four logical basis states and a backward propagation of four extended gradient states. However, the
linesearch may require additional evaluations of the gradient in order to determine the step width.
The number of linesearch steps varies for different optimizations and between iterations. Thus, the
benchmark of the runtime in panels (a,b) shows the seconds required per gradient evaluation. The op-
timizations were performed on an Intel Xeon Gold 6226R CPU workstation with a nominal clock speed
of 2.9 GHz, without parallelization. The runtime was determined using BenchmarkTools.jl [113] as
the minimum of 20 optimization runs, with a maximum total benchmark time of 24 hours. It excludes
compilation overhead.

Fundamentally, the runtime is super-linear with the size of the Hilbert space. This is due to two
factors: First, an increase in the spectral range, which for the Chebychev propagation implies an in-
crease in the number of coefficients required for Eq. (7) to converge to machine precision. This increase
is roughly linear with the number of levels in the transmon, i.e., the square root of the Hilbert space
dimension. Second, the numerical scaling of the matrix-vector multiplications in Eq. (8) (and likewise
in the implementation of a Runge-Kutta ode solver). In principle, matrix-vector multiplication scales
as N2

H , although this is mitigated by the fact that we use sparse matrices to store the Hamiltonian.
For the gate duration, the runtime is directly proportional to the number of time steps.

We find that the runtime of the Semi-AD optimization is virtually indistinguishable from that of
the direct optimization. This is in stark contrast to the full-AD optimization with a general ode solver.
For a Hilbert space dimension greater than 64, the runtime of this optimization becomes prohibitively
expensive (greater than 10 minutes per iteration, or step in the line search). The situation improves
dramatically when using a modified Chebychev propagator for the full-AD optimization. Within the
shown parameter region, these optimizations are well within the order of one minute per iteration.
However, the insets in panels (a, b) show a significant difference in scaling between the semi-AD and
full-AD Chebychev optimizations. For the linear scaling in panel (b), we find a factor of 10 between the
different slopes (3 ms per time step versus 30 ms per time step). This order of magnitude also appears
realistic for the scaling with respect to the Hilbert space dimension, and may become a problem for the
runtime of much larger systems. Certainly, it will not be possible to perform a full-AD optimization
of anything but the most trivial open quantum systems, with a Liouville space that is quadratically
larger than the underlying Hilbert space. This is especially true because the Chebychev propagator is
not applicable to non-unitary (open system) dynamics. The use of Newton polynomials discussed in
Section 2.3 is numerically more demanding than the use of Chebychev polynomials, and it is unclear
whether it would be feasible to implement a variant of the method that avoids in-place operations
and would be compatible with a framework for automatic differentiation such as Zygote. Thus, a
full-AD optimization of an open quantum system would likely have to rely on an ode solver, with the
prohibitive runtime shown in panel (a). The relative scaling of a direct optimization compared to a
full-AD optimization matches recent observations in Ref. [114].

There is no substantial difference in runtime between the different optimization functionals. This
illustrates that the numerical effort of the optimization is entirely dominated by the time propagation,
and further explains why the performance of the Semi-AD optimization is indistinguishable from a
direct optimization with an analytic gradient.

The peak ram usage shown in panels (c, d) was measured by monitoring the Julia process running
the optimization with psutil [115], and subtracting a baseline from a “Hello World” program to
account for the footprint of the Julia runtime, which can vary depending on the exact version of Julia
and the installed packages. We show the median ram usage, as well as the range of values in the
inset for the Semi-AD (Cheby) optimization. There is significant fluctuation in the peak ram usage,
as it depends on Julia’s garbage collector, which has some element of randomness. However, the data
shown in the insets indicates that the peak ram usage for semi-automatic differentiation is essentially
constant around 100 MB, and equal to the memory used for the direct optimization with an analytic
gradient. In principle, as analyzed in Section 4.6, we would expect a linear scaling for large Hilbert
space dimensions,. This is determined by the storage of the forward-propagated states marked in red

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 21

in Fig. 1 (a). For N = 4 targets, a Hilbert space dimension of NH , and NT time steps, each stored
state is a vector of complex numbers of length NH , and each complex number requires 64 bits for both
the real and imaginary part, i.e., 16 bytes in total. Thus, the total memory required for storage is

MBstorage = N ·NH ·NT ·
16

(1024)2 . (59)

For NH = 225, NT = 1000, the rightmost point in the inset of panel (a), this comes out to 14 MB,
and 49 MB for NH = 100, NT = 8000, the rightmost point in the inset of panel (b), and we can
conclude that for the data shown in Fig. 2, the propagation overhead still dominates over the storage
of propagated states.

The memory usage a full-AD optimization with an ode solver appears constant with respect to the
size of the Hilbert space, albeit with a significant overhead, averaging around 700 MB. This is likely
due to the solver being optimized for automatic differentiation, that is, providing handwritten adjoints
for the Runge-Kutta step and thus eliminating the overhead of the computational graph for a single
propagation step. Memory usage still scales linearly with the number of time steps, reaching 4 GB
for 8000 time steps. The full-AD optimization using a Chebychev expansion does not benefit from
the AD-aware propagation in DifferentialEquations.jl, and thus the memory usage scales with
the number of coefficients in Eq. (7), resulting in an excessive ram usage of 8 GB for a Hilbert space
dimension of 225. Thus, the use of the Chebychev propagator for significantly larger Hilbert spaces
would be prohibitive, and a possible implementation of a Newton propagator would likely perform
even worse, making the use of full-AD for open quantum systems impractical.

Lastly, in panels (e, f) we show the accumulated memory allocated on the heap, as measured by
BenchmarkTools.jl. Note the scale of the y-axis, which reaches 4 × 105 MB, i.e., 400 GB. This is
normalized by the number of gradient evaluations. The allocations differ from the peak ram usage
due to Julia’s garbage collector, but correlate strongly with the runtime shown in panels (a, b). This
illustrates the importance of good memory management, which is easy for an in-place Chebychev
propagator (the negligible allocations of < 60 MB shown in the inset), but impossible for a propagator
running in an automatic differentiation framework that does not allow for in-place operations.

6 Conclusion and Outlook
We have developed a theory of semi-automatic differentiation that allows to optimize arbitrary func-
tionals in an efficient and flexible manner. Separating time propagation and the evaluation of the
functional eliminates the excessive computational overhead and limited scope traditionally associated
with the use of automatic differentiation (AD). With semi-AD, the time propagation and the associ-
ated gradient can be evaluated outside of the AD framework in a modified grape scheme, which we
have described in detail. This scheme can be implemented in the most efficient manner possible, using
sparse linear algebra, complex matrices, and in-place operations. The remaining part of the gradient is
of minimal computational complexity and can thus be efficiently evaluated within an AD framework.

For the example of entangling gates on superconducting transmon qubits, we have verified that we
can optimize for an arbitrary perfectly entangling quantum gate, either via a functional exploiting the
geometric structure of the Weyl chamber, or by directly by maximizing the gate concurrence. This
is the first demonstration of a gradient-based optimization of the concurrence, or any non-analytic
functional. Fundamentally, such functionals require the use of automatic differentiation and have been
held back thus far by the associated numerical overhead.

The runtime and memory usage of the semi-AD optimizations shown here scales identically to a
direct optimization of a quantum gate with a fully analytic gradient. That is, we completely eliminate
the exorbitant numerical overhead traditionally associated with automatic differentiation. A “full-AD”
optimization that uses a generic ode solver within the AD framework becomes unfeasible in terms of
runtime for Hilbert space dimensions greater than ≈ 100. The runtime can be improved significantly
by adapting a propagation via expansion into Chebychev polynomials to the requirements of the AD

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 22

framework (no in-place linear algebra operations). However, this results in excessive memory usage
and would be difficult to extend to the significantly more complicated propagators required for open
quantum systems.

As we have demonstrated, the potential improvements of semi-automatic differentiation scale super-
linearly both for runtime and memory usage, compared to a full-AD approach. Even for moderate
Hilbert space sizes in a closed quantum system, we observe improvements of up to two orders of
magnitude. For control problems of larger dimension (either the dimension of the Hilbert space or the
number of control parameters), and especially in open quantum systems, that effect will be further
magnified. In such a setting, and for functionals where an analytic gradient is not feasible, semi-
automatic differentiation will be the only viable option. Fundamentally, an optimization will be possible
as long as simulating the time dynamics of the system is computationally feasible.

We have implemented the semi-AD approach in two ready-to-use Julia packages, GRAPE.jl [69]
and Krotov.jl [70], as part of the more general QuantumControl.jl [71]. As an AD framework, we
have used Zygote [60, 61]. However, the method described here is applicable to any language or AD
framework. In fact, the low complexity of the evaluation of the optimization functional relative to the
full time propagation allows for additional avenues in environments where AD is underdeveloped. For
example, we have tested the use of finite differences [116] and found it to be adequate for the examples
in Section 5. Similarly, we would expect the easier-to-implement forward-mode differentiation to be a
practical alternative.

We have developed the method of semi-automatic differentiation for the standard grape model of
piecewise-constant control fields, albeit extending it to arbitrary functionals. However, the idea applies
also to extensions of grape for a reduced number of control parameters, as used in the goat [117],
group [118], and grafs [119] methods. Parametrization of the control field may be taken into account
by a further chain rule in Eq. (3). Furthermore, as pointed out in Ref. [117], Eq. (5) can be used not just
to evaluate the gradient of a piecewise constant time step, but also the gradient a full time propagation
with respect to a single control parameter. In all of these cases, the method can be augmented with
semi-automatic differentiation to extend it to arbitrary functionals. We will explore this in future work
as part of the QuantumControl.jl framework [71].

In addition to enabling the use of AD, a second motivation for using a framework like Tensorflow to
model the entire optimization problem was to enable the use of gpu computing, enabling considerable
speedups [37, 49]. This possibility remains with semi-automatic differentiation, but the use of AD and
gpu computing are now entirely independent: The time propagation can be implemented in whatever
way is most efficient, including on the gpu.

Lastly, in Ref. [120], it was observed that the scheme in Fig. 1 (a) can be extended to compute the
full Hessian of an overlap of two states. With next-generation AD systems that allow for the calcu-
lation of higher-order derivatives [121], this opens up the possibility of a full Hessian semi-automatic
differentiation approach. The resulting Newton optimization may provide better convergence than the
pseudo-Newton achievable via lbfgs that we have used here.

Application of the semi-automatic differentiation framework developed in this paper will open
new pathways to solve long-standing problems in quantum control. Apart from the optimization
of entanglement measures in quantum information, which we have demonstrated here, and which
could be extended to open quantum systems [122], the method would be applicable to the creation
of multipartite entanglement in many-body systems. To date, this has been addressed with optimal
control, either indirectly [123] or with gradient-free methods [124], usually via the crab method [125–
127]. The ability to explore the optimization landscape for these control problems more broadly may
lead to deep insights into the quantum behavior, e.g., of biological systems [128, 129].

In quantum metrology, there is a wide range of opportunities to use optimal control beyond simple
state-to-state transfers. For one, we can address functionals like the recently developed population
transfer functional for atom interferometry [130]. So far, this has only been explored with Krotov’s
method, but the use of semi-AD would allow optimizing the components of an atom interferometer
using grape, potentially exploiting the improved asymptotic convergence [24] in the generally flat
optimization landscape of a robustness optimization [89]. This would also extend to a recently proposed

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 23

tractor atom interferometer [131, 132]. More fundamentally, we may directly maximize metrological
measures through quantum control [133, 134]. Generalizing from a recent application of optimal control
to the creation of extreme spin-squeezed states [135] we may wish to directly maximize the quantum
Fisher information [28, 29], which is non-analytic in open quantum systems [30]. Thus, we expect
semi-automatic differentiation to be an indispensable tool for the design of metrological protocols in
open quantum systems.

Data Availability
The code used to generate the benchmarks in Section 5 and Fig. 2 is available at Ref. [136], or
under DOI 10.5281/zenodo.7386493. Moreover, examples for the perfect entangler and concurrence
optimizations for coupled transmon qubits that show the resulting optimized fields are available as
part of the documentation of the GRAPE.jl and Krotov.jl packages, which implement the semi-AD
approach [69, 70].

Acknowledgments
MHG and SCC acknowledge support by the DEVCOM Army Research Laboratory under Cooperative
Agreement Number W911NF-16-2-0147 and W911NF-21-2-0037, respectively. The work was also
supported by DEVCOM Army Research Laboratory through DIRA-TRC No. DTR19-CI-019. The
authors thank Alastair Marshall for contributions to the GRAPE.jl package.

References
[1] Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. “Control of quantum phenomena: past,

present and future”. New J. Phys. 12, 075008 (2010).
[2] Moshe Shapiro and Paul Brumer. “Quantum control of molecular processes”. Wiley & Sons.

(2012). Second edition.
[3] Christiane P. Koch. “Controlling open quantum systems: tools, achievements, and limitations”.

J. Phys.: Condens. Matter 28, 213001 (2016).
[4] Ignacio R. Sola, Bo Y. Chang, Svetlana A. Malinovskaya, and Vladimir S. Malinovsky. “Quantum

control in multilevel systems”. In Ennio Arimondo, Louis F. DiMauro, and Susanne F. Yelin,
editors, Advances In Atomic, Molecular, and Optical Physics. Volume 67, chapter 3, pages
151–256. Academic Press (2018).

[5] Oleg V. Morzhin and Alexander N. Pechen. “Krotov method for optimal control of closed
quantum systems”. Russ. Math. Surv. 74, 851 (2019).

[6] Frank K. Wilhelm, Susanna Kirchhoff, Shai Machnes, Nicolas Wittler, and Dominique Sugny.
“An introduction into optimal control for quantum technologies” (2020). arXiv:2003.10132.

[7] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J.
Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny,
and Frank K. Wilhelm. “Quantum optimal control in quantum technologies. strategic report on
current status, visions and goals for research in Europe”. EPJ Quantum Technol. 9, 19 (2022).

[8] Michael Nielsen and Isaac L. Chuang. “Quantum computation and quantum information”.
Cambridge University Press. (2000).

[9] Iulia M. Georgescu, Sahel Ashhab, and Franco Nori. “Quantum simulation”. Rev. Mod. Phys.
86, 153 (2014).

[10] Christian L. Degen, Friedemann Reinhard, and Paola Cappellaro. “Quantum sensing”. Rev.
Mod. Phys. 89, 035002 (2017).

[11] Ugo Boscain, Mario Sigalotti, and Dominique Sugny. “Introduction to the Pontryagin maximum
principle for quantum optimal control”. PRX Quantum 2, 030203 (2021).

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 24

https://doi.org/10.5281/zenodo.7386493
https://dx.doi.org/10.1088/1367-2630/12/7/075008
https://dx.doi.org/10.1002/9783527639700
https://dx.doi.org/10.1088/0953-8984/28/21/213001
https://dx.doi.org/10.1016/bs.aamop.2018.02.003
https://dx.doi.org/10.1016/bs.aamop.2018.02.003
https://dx.doi.org/10.1070/rm9835
http://arxiv.org/abs/2003.10132
https://dx.doi.org/10.1140/epjqt/s40507-022-00138-x
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1103/RevModPhys.86.153
https://dx.doi.org/10.1103/RevModPhys.86.153
https://dx.doi.org/10.1103/RevModPhys.89.035002
https://dx.doi.org/10.1103/RevModPhys.89.035002
https://dx.doi.org/10.1103/prxquantum.2.030203

[12] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J. Glaser.
“Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent
algorithms”. J. Magnet. Res. 172, 296 (2005).

[13] Pierre de Fouquières, Sophie G. Schirmer, Steffen J. Glaser, and Ilya Kuprov. “Second order
gradient ascent pulse engineering”. J. Magnet. Res. 212, 412 (2011).

[14] Vadim F. Krotov and N. N. Fel’dman. “An iterative method for solving optimal-control prob-
lems”. Engrg. Cybernetics 21, 123 (1983).

[15] Vadim F. Krotov. “A technique of global bounds in optimal control theory”. Control Cybern.
17, 115 (1988).

[16] Vadim F. Krotov. “Global methods in optimal control”. Dekker. New York, NY, USA (1996).
[17] József Somlói, Vladimir A. Kazakov, and David J. Tannor. “Controlled dissociation of I2 via

optical transitions between the X and B electronic states”. Chem. Phys. 172, 85 (1993).
[18] Allon Bartana, Ronnie Kosloff, and David J. Tannor. “Laser cooling of internal degrees of

freedom. II”. J. Chem. Phys. 106, 1435 (1997).
[19] José P. Palao and Ronnie Kosloff. “Optimal control theory for unitary transformations”. Phys.

Rev. A 68, 062308 (2003).
[20] Daniel M. Reich, Mamadou Ndong, and Christiane P. Koch. “Monotonically convergent opti-

mization in quantum control using Krotov’s method”. J. Chem. Phys. 136, 104103 (2012).
[21] Amir Rashidinejad, Yihan Li, and Andrew M. Weiner. “Recent advances in programmable

photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation”. IEEE J.
Quantum Electron. 52, 1 (2016).

[22] Andrew M. Weiner. “Femtosecond pulse shaping using spatial light modulators”. Rev. Sci. Instr.
71, 1929 (2000).

[23] J. Robert Johansson, Paul D. Nation, and Franco Nori. “QuTiP 2: A Python framework for the
dynamics of open quantum systems”. Comput. Phys. Commun. 184, 1234 (2013).

[24] Shai Machnes, Uwe Sander, Steffen J. Glaser, Pierre de Fouquières, Audrūnas Gruslys, So-
phie G. Schirmer, and Thomas Schulte-Herbrüggen. “Comparing, optimizing, and benchmark-
ing quantum-control algorithms in a unifying programming framework”. Phys. Rev. A 84,
022305 (2011).

[25] Hannah J. Hogben, Matthew Krzystyniak, Gareth T. P. Charnock, Peter J. Hore, and Ilya
Kuprov. “Spinach – a software library for simulation of spin dynamics in large spin systems”. J.
Magnet. Res. 208, 179 (2011).

[26] Zdeněk Tošner, Thomas Vosegaard, Cindie Kehlet, Navin Khaneja, Steffen J. Glaser, and
Niels Chr. Nielsen. “Optimal control in NMR spectroscopy: Numerical implementation in SIMP-
SON”. J. Magnet. Res. 197, 120 (2009).

[27] Michael H. Goerz, Daniel Basilewitsch, Fernando Gago-Encinas, Matthias G. Krauss, Karl P.
Horn, Daniel M. Reich, and Christiane P. Koch. “Krotov: A Python implementation of Krotov’s
method for quantum optimal control”. SciPost Phys. 7, 080 (2019).

[28] Samuel L. Braunstein and Carlton M. Caves. “Statistical distance and the geometry of quantum
states”. Phys. Rev. Lett. 72, 3439 (1994).

[29] Luca Pezzé and Augusto Smerzi. “Entanglement, nonlinear dynamics, and the Heisenberg limit”.
Phys. Rev. Lett. 102, 100401 (2009).

[30] Jian Ma, Xiaoguang Wang, Changpu P. Sun, and Franco Nori. “Quantum spin squeezing”. Phys.
Rep. 509, 89 (2011).

[31] Barbara Kraus and J. Ignacio Cirac. “Optimal creation of entanglement using a two-qubit gate”.
Phys. Rev. A 63, 062309 (2001).

[32] Jun Zhang, Jǐŕı Vala, Shankar Sastry, and K. Birgitta Whaley. “Geometric theory of nonlocal
two-qubit operations”. Phys. Rev. A 67, 042313 (2003).

[33] Paul Watts, Maurice O’Connor, and Jǐŕı Vala. “Metric structure of the space of two-qubit gates,
perfect entanglers and quantum control”. Entropy 15, 1963 (2013).

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 25

https://dx.doi.org/10.1016/j.jmr.2004.11.004
https://dx.doi.org/10.1016/j.jmr.2011.07.023
https://dx.doi.org/10.1016/0301-0104(93)80108-L
https://dx.doi.org/10.1063/1.473973
https://dx.doi.org/10.1103/PhysRevA.68.062308
https://dx.doi.org/10.1103/PhysRevA.68.062308
https://dx.doi.org/10.1063/1.3691827
https://dx.doi.org/10.1109/jqe.2015.2506987
https://dx.doi.org/10.1109/jqe.2015.2506987
https://dx.doi.org/10.1063/1.1150614
https://dx.doi.org/10.1063/1.1150614
https://dx.doi.org/10.1016/j.cpc.2012.11.019
https://dx.doi.org/10.1103/PhysRevA.84.022305
https://dx.doi.org/10.1103/PhysRevA.84.022305
https://dx.doi.org/10.1016/j.jmr.2010.11.008
https://dx.doi.org/10.1016/j.jmr.2010.11.008
https://dx.doi.org/http://dx.doi.org/10.1016/j.jmr.2008.11.020
https://dx.doi.org/10.21468/scipostphys.7.6.080
https://dx.doi.org/10.1103/physrevlett.72.3439
https://dx.doi.org/10.1103/physrevlett.102.100401
https://dx.doi.org/10.1016/j.physrep.2011.08.003
https://dx.doi.org/10.1016/j.physrep.2011.08.003
https://dx.doi.org/10.1103/PhysRevA.63.062309
https://dx.doi.org/10.1103/PhysRevA.67.042313
https://dx.doi.org/10.3390/e15061963

[34] Paul Watts, Jǐŕı Vala, Matthias M. Müller, Tommaso Calarco, K. Birgitta Whaley, Daniel M.
Reich, Michael H. Goerz, and Christiane P. Koch. “Optimizing for an arbitrary perfect entangler:
I. Functionals”. Phys. Rev. A 91, 062306 (2015).

[35] Michael H. Goerz, Giulia Gualdi, Daniel M. Reich, Christiane P. Koch, Felix Motzoi, K. Birgitta
Whaley, Jǐŕı Vala, Matthias M. Müller, Simone Montangero, and Tommaso Calarco. “Optimizing
for an arbitrary perfect entangler. II. Application”. Phys. Rev. A 91, 062307 (2015).

[36] Hamza Jirari. “Optimal control approach to dynamical suppression of decoherence of a qubit”.
Europhys. Lett. 87, 40003 (2009).

[37] Nelson Leung, Mohamed Abdelhafez, Jens Koch, and David I. Schuster. “Speedup for quantum
optimal control from automatic differentiation based on graphics processing units”. Phys. Rev.
A 95, 042318 (2017).

[38] Mohamed Abdelhafez, David I. Schuster, and Jens Koch. “Gradient-based optimal control of
open quantum systems using quantum trajectories and automatic differentiation”. Phys. Rev.
A 99, 052327 (2019).

[39] Mohamed Abdelhafez, Brian Baker, András Gyenis, Pranav Mundada, Andrew A. Houck,
David I. Schuster, and Jens Koch. “Universal gates for protected superconducting qubits using
optimal control”. Phys. Rev. A 101, 022321 (2020).

[40] Frank Schäfer, Michal Kloc, Christoph Bruder, and Niels Lörch. “A differentiable programming
method for quantum control”. Mach. Learn.: Sci. Technol. 1, 035009 (2020).

[41] Nelson Leung and Contributors (2021). code: SchusterLab/quantum-optimal-control.
[42] Daniel Weiss and Contributors (2021). code: SchusterLab/qoc.
[43] Andreas Griewank and Andrea Walther. “Evaluating derivatives”. Society for Industrial and

Applied Mathematics. Philadelphia (2008). Second edition.
[44] Charles C. Margossian. “A review of automatic differentiation and its efficient implementation”.

WIREs Data Mining Knowl Discov.9 (2019).
[45] Frank Schäfer, Pavel Sekatski, Martin Koppenhöfer, Christoph Bruder, and Michal Kloc. “Con-

trol of stochastic quantum dynamics by differentiable programming”. Mach. Learn.: Sci. Technol.
2, 035004 (2021).

[46] Thomas Propson, Brian E. Jackson, Jens Koch, Zachary Manchester, and David I. Schus-
ter. “Robust quantum optimal control with trajectory optimization”. Phys. Rev. Applied 17,
014036 (2022).

[47] Michael H. Goerz and Kurt Jacobs. “Efficient optimization of state preparation in quantum
networks using quantum trajectories”. Quantum Sci. Technol. 3, 045005 (2018).

[48] Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag Saha Roy, Daniel J.
Egger, Stefan Filipp, Frank K. Wilhelm, and Shai Machnes. “Integrated tool set for control,
calibration, and characterization of quantum devices applied to superconducting qubits”. Phys.
Rev. Applied 15, 034080 (2021).

[49] Harrison Ball, Michael J. Biercuk, Andre Carvalho, Jiayin Chen, Michael Hush, Leonardo A. De
Castro, Li Li, Per J. Liebermann, Harry J. Slatyer, Claire Edmunds, Virginia Frey, Cornelius
Hempel, and Alistair Milne. “Software tools for quantum control: Improving quantum computer
performance through noise and error suppression” (2020). arXiv:2001.04060.

[50] Asad Raza and Contributors (2022). code: qgrad/qgrad.
[51] Andreas Griewank. “Who invented the reverse mode of differentiation”. In Mar-

tin Grötschel, editor, Optimization Stories. Pages 389–400. Documenta Mathe-
matica. 21st International Symposium on Mathematical Programming, Berlin (2012).
url: www.zib.de/groetschel/publications/OptimizationStories.pdf.

[52] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
back-propagating errors”. Nature 323, 533 (1986).

[53] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-
van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensorflow: A system for

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 26

https://dx.doi.org/10.1103/PhysRevA.91.062306
https://dx.doi.org/10.1103/PhysRevA.91.062307
https://dx.doi.org/10.1209/0295-5075/87/40003
https://dx.doi.org/10.1103/PhysRevA.95.042318
https://dx.doi.org/10.1103/PhysRevA.95.042318
https://dx.doi.org/10.1103/PhysRevA.99.052327
https://dx.doi.org/10.1103/PhysRevA.99.052327
https://dx.doi.org/10.1103/physreva.101.022321
https://dx.doi.org/10.1088/2632-2153/ab9802
https://github.com/SchusterLab/quantum-optimal-control
https://github.com/SchusterLab/qoc
https://dx.doi.org/10.1137/1.9780898717761
https://dx.doi.org/10.1137/1.9780898717761
https://dx.doi.org/10.1002/widm.1305
https://dx.doi.org/10.1088/2632-2153/abec22
https://dx.doi.org/10.1088/2632-2153/abec22
https://dx.doi.org/10.1103/physrevapplied.17.014036
https://dx.doi.org/10.1103/physrevapplied.17.014036
https://dx.doi.org/10.1088/2058-9565/aace16
https://dx.doi.org/10.1103/physrevapplied.15.034080
https://dx.doi.org/10.1103/physrevapplied.15.034080
http://arxiv.org/abs/2001.04060
https://github.com/qgrad/qgrad
https://www.zib.de/groetschel/publications/OptimizationStories.pdf
https://dx.doi.org/10.1038/323533a0

large-scale machine learning”. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). Page 265. (2016). url: www.tensorflow.org/.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An imperative
style, high-performance deep learning library”. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché Buc, Edward A. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32. Pages 8024–8035. Vancouver, BC,
Canada (2019). Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019. url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[55] Adam Paszke and Contributors (2022). code: pytorch/pytorch.
[56] Roy Frostig, Matthew Johnson, and Chris Leary. “Compiling machine learning pro-

grams via high-level tracing”. In SysML Conference. Stanford, CA (2018). url: ml-
sys.org/Conferences/2019/doc/2018/146.pdf.

[57] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang (2018). code: google/jax.

[58] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso,
Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah. “Fashionable modelling with
Flux” (2018). arXiv:1811.01457.

[59] Michael Innes. “Flux: Elegant machine learning with Julia”. J. Open Source Softw. 3, 602 (2018).
[60] Michael Innes. “Don’t unroll adjoint: Differentiating SSA-form programs” (2018).

arXiv:1810.07951.
[61] Michael Innes and Contributors (2022). code: FluxML/Zygote.jl.
[62] Hillel Tal-Ezer and Ronnie Kosloff. “An accurate and efficient scheme for propagating the time

dependent Schrödinger equation”. J. Chem. Phys. 81, 3967 (1984).
[63] Ronnie Kosloff. “Time-dependent quantum-mechanical methods for molecular dynamics”. J.

Chem. Phys. 92, 2087 (1988).
[64] Michael Berman, Ronnie Kosloff, and Hillel Tal-Ezer. “Solution of the time-dependent liouville-

von neumann equation: dissipative evolution”. J. Phys. A 25, 1283 (1992).
[65] Ronnie Kosloff. “Propagation methods for quantum molecular dynamics”. Annu. Rev. Phys.

Chem. 45, 145 (1994).
[66] Guy Ashkenazi, Ronnie Kosloff, Sanford Ruhman, and Hillel Tal-Ezer. “Newtonian propaga-

tion methods applied to the photodissociation dynamics of I−3 ”. J. Chem. Phys. 103, 10005–
10014 (1995).

[67] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. “Julia: A fresh approach to
numerical computing”. SIAM Rev. 59, 65 (2017).

[68] “The Julia programming language”. url: julialang.org.
[69] Michael H. Goerz and Contributors (2022). code: JuliaQuantumControl/GRAPE.jl.
[70] Michael H. Goerz and Contributors (2022). code: JuliaQuantumControl/Krotov.jl.
[71] Michael H. Goerz and Contributors (2022). code: JuliaQuantumControl/QuantumControl.jl.
[72] Jens Koch, Terri M. Yu, Jay Gambetta, Andrew A. Houck, David I. Schuster, Johannes Majer,

Alexandre Blais, Michel H. Devoret, Steven M. Girvin, and Robert J. Schoelkopf. “Charge-
insensitive qubit design derived from the Cooper pair box”. Phys. Rev. A 76, 042319 (2007).

[73] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, Steven M. Girvin, M. H. Devoret, and
Robert J. Schoelkopf. “Quantum-information processing with circuit quantum electrodynamics”.
Phys. Rev. A 75, 032329 (2007).

[74] Michael H. Goerz, Daniel M. Reich, and Christiane P. Koch. “Optimal control theory for a
unitary operation under dissipative evolution” (2021). arXiv:1312.0111v2.

[75] The MathWorks. Natick, MA, USA. “Matlab optimization toolbox”. (2018).

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 27

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/pytorch/pytorch
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://mlsys.org/Conferences/2019/doc/2018/146.pdf
https://github.com/google/jax
http://arxiv.org/abs/1811.01457
https://dx.doi.org/10.21105/joss.00602
http://arxiv.org/abs/1810.07951
https://github.com/FluxML/Zygote.jl
https://dx.doi.org/10.1063/1.448136
https://dx.doi.org/10.1021/j100319a003
https://dx.doi.org/10.1021/j100319a003
https://dx.doi.org/10.1088/0305-4470/25/5/031
https://dx.doi.org/10.1146/annurev.pc.45.100194.001045
https://dx.doi.org/10.1146/annurev.pc.45.100194.001045
https://dx.doi.org/10.1063/1.469904
https://dx.doi.org/10.1063/1.469904
https://dx.doi.org/10.1137/141000671
https://julialang.org
https://github.com/JuliaQuantumControl/GRAPE.jl
https://github.com/JuliaQuantumControl/Krotov.jl
https://github.com/JuliaQuantumControl/QuantumControl.jl
https://dx.doi.org/10.1103/PhysRevA.76.042319
https://dx.doi.org/10.1103/PhysRevA.75.032329
http://arxiv.org/abs/1312.0111v2

[76] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental algorithms for scientific computing
in Python”. Nat. Methods 17, 261 (2020).

[77] Eric Jones, Travis Oliphant, Pearu Peterson, et al. “SciPy: Open source scientific tools for
Python”. (2001–). url: docs.scipy.org/doc/scipy/.

[78] Patrick K. Mogensen and Asbjørn N. Riseth. “Optim: A mathematical optimization package for
Julia”. J. Open Source Softw. 3, 615 (2018).

[79] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A limited memory algorithm
for bound constrained optimization”. SIAM J. Sci. Comput. 16, 1190 (1995).

[80] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. “Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization”. ACM Trans. Math. Softw.
23, 550 (1997).

[81] Yupei Qi and Contributors (2022). code: Gnimuc/LBFGSB.jl.
[82] Patrick K. Mogensen, Asbjørn N. Riseth, and Contributors (2020). code: JuliaNL-

Solvers/LineSearches.jl.
[83] Charles F. Van Loan. “Computing integrals involving the matrix exponential”. IEEE Trans.

Automat. Contr. 23, 395 (1978).
[84] David L. Goodwin and Ilya Kuprov. “Auxiliary matrix formalism for interaction represen-

tation transformations, optimal control, and spin relaxation theories”. J. Chem. Phys. 143,
084113 (2015).

[85] Amparo Gil, Javier Segura, and Nico M. Temme. “Numerical methods for special functions”.
Society for Industrial and Applied Mathematics. (2007).

[86] Hillel Tal-Ezer. “On restart and error estimation for Krylov approximation of w = f(a)v”. SIAM
J. Sci. Comput. 29, 2426 (2007).

[87] Michael H. Goerz and Contributors (2022). code: JuliaQuantumControl/QuantumPropagators.jl.
[88] Michael H. Goerz, Daniel M. Reich, and Christiane P. Koch. “Optimal control theory for a

unitary operation under dissipative evolution”. New J. Phys. 16, 055012 (2014).
[89] Michael H. Goerz, Eli J. Halperin, Jon M. Aytac, Christiane P. Koch, and K. Birgitta Whaley.

“Robustness of high-fidelity Rydberg gates with single-site addressability”. Phys. Rev. A 90,
032329 (2014).

[90] Mamadou Ndong, Hillel Tal-Ezer, Ronnie Kosloff, and Christiane P. Koch. “A Chebychev prop-
agator for inhomogeneous Schrödinger equations”. J. Chem. Phys. 130, 124108 (2009).

[91] Michael H. Goerz. “Optimizing robust quantum gates in open quantum systems”. PhD thesis.
Universität Kassel. (2015). url: d-nb.info/1072259729/34.

[92] Christopher Rackauckas. “Engineering trade-offs in automatic differentiation: from TensorFlow
and PyTorch to Jax and Julia”. url: http://www.stochasticlifestyle.com/engineering-trade-offs-
in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/.

[93] Jan R. Magnus and Heinz Neudecker. “Matrix differential calculus with applications in statistics
and econometrics”. Wiley Series in Probability and Statistics. Wiley. (2019). Third edition.

[94] Kaare B. Petersen and Michael S. Pedersen. “The matrix cookbook”. Technical report. Technical
University of Denmark (2012). url: http://www2.imm.dtu.dk/pubdb/p.php?3274.

[95] Mike B. Giles. “Collected matrix derivative results for forward and reverse mode algorith-
mic differentiation”. In Advances in Automatic Differentiation. Volume 64, pages 35–44.
Springer (2008).

[96] Mike B. Giles. “An extended collection of matrix derivative results for forward and reverse
mode automatic differentiation”. Technical Report NA-08-01. Oxford University Computing
Laboratory (2008). url: people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf.

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 28

https://dx.doi.org/10.1038/s41592-019-0686-2
https://docs.scipy.org/doc/scipy/
https://dx.doi.org/10.21105/joss.00615
https://dx.doi.org/10.1137/0916069
https://dx.doi.org/10.1145/279232.279236
https://dx.doi.org/10.1145/279232.279236
https://github.com/Gnimuc/LBFGSB.jl
https://github.com/JuliaNLSolvers/LineSearches.jl
https://github.com/JuliaNLSolvers/LineSearches.jl
https://dx.doi.org/10.1109/tac.1978.1101743
https://dx.doi.org/10.1109/tac.1978.1101743
https://dx.doi.org/10.1063/1.4928978
https://dx.doi.org/10.1063/1.4928978
https://dx.doi.org/10.1137/1.9780898717822
https://dx.doi.org/10.1137/040617868
https://dx.doi.org/10.1137/040617868
https://github.com/JuliaQuantumControl/QuantumPropagators.jl
https://dx.doi.org/10.1088/1367-2630/16/5/055012
https://dx.doi.org/10.1103/PhysRevA.90.032329
https://dx.doi.org/10.1103/PhysRevA.90.032329
https://dx.doi.org/10.1063/1.3098940
https://d-nb.info/1072259729/34
http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
http://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
https://dx.doi.org/10.1002/9781119541219
http://www2.imm.dtu.dk/pubdb/p.php?3274
https://dx.doi.org/10.1007/978-3-540-68942-3_4
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf

[97] Are Hjørungnes. “Complex-valued matrix derivatives: With applications in signal processing
and communications”. Cambridge University Press. (2011).

[98] L. Susan Blackford, James Demmel, Jack J. Dongarra, Ian S. Duff, Sven Hammarling, Greg
Henry, Michael Heroux, Linda Kaufman, Andrew Lumsdain, Antoine Petitet, Roldan Pozo,
Karin Remington, and R. Clint Whaley. “An updated set of basic linear algebra subprograms
(BLAS)”. ACM Trans. Math. Softw. 28, 135 (2002).

[99] Sophie G. Schirmer and Pierre de Fouquières. “Efficient algorithms for optimal control of quan-
tum dynamics: the Krotov method unencumbered”. New J. Phys. 13, 073029 (2011).

[100] José P. Palao, Ronnie Kosloff, and Christiane P. Koch. “Protecting coherence in optimal control
theory: State-dependent constraint approach”. Phys. Rev. A 77, 063412 (2008).

[101] Sri H. K. Narayanan, Thomas Propson, Marcelo Bongarti, Jan Hueckelheim, and Paul Hovland.
“Reducing memory requirements of quantum optimal control”. Technical Report ANL/MCS-
P9566-0222. Argonne National Laboratory (2022).

[102] Stefano Poletto, Jay M. Gambetta, Seth T. Merkel, John A. Smolin, Jerry M. Chow, A. D.
Córcoles, George A. Keefe, Mary B. Rothwell, J. R. Rozen, D. W. Abraham, Chad Rigetti, and
M. Steffen. “Entanglement of two superconducting qubits in a waveguide cavity via monochro-
matic two-photon excitation”. Phys. Rev. Lett. 109, 240505 (2012).

[103] Michael H. Goerz, Felix Motzoi, K. Birgitta Whaley, and Christiane P. Koch. “Charting the
circuit QED design landscape using optimal control theory”. npj Quantum Inf 3, 37 (2017).

[104] Wen-Long Ma, Shruti Puri, Robert J. Schoelkopf, Michel H. Devoret, Steven M. Girvin, and
Liang Jiang. “Quantum control of bosonic modes with superconducting circuits”. Sci. Bull. 66,
1789 (2021).

[105] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang,
Simon Gustavsson, and William D. Oliver. “Superconducting qubits: Current state of play”.
Annu. Rev. Condens. Matter Phys. 11, 369 (2020).

[106] Alexandre Blais, Arne L. Grimsmo, Steven M. Girvin, and Andreas Wallraff. “Circuit quantum
electrodynamics”. Rev. Mod. Phys. 93, 025005 (2021).

[107] Andrew Childs, Henry Haselgrove, and Michael Nielsen. “Lower bounds on the complexity of
simulating quantum gates”. Phys. Rev. A 68, 052311 (2003).

[108] Michael H. Goerz and Contributors (2022). code: qucontrol/weylchamber.
[109] Michael H. Goerz and Contributors (2022). code: JuliaQuantumCon-

trol/QuantumControlBase.jl.
[110] Yuriy Makhlin. “Nonlocal properties of two-qubit gates and mixed states, and the optimization

of quantum computations”. Quantum Inf. Process. 1, 243 (2002).
[111] John R. Dormand and Pete J. Prince. “A family of embedded Runge-Kutta formulae”. J.

Comput. Appl. Math 6, 19 (1980).
[112] Christopher Rackauckas and Qing Nie. “DifferentialEquations.jl – a performant and feature-rich

ecosystem for solving differential equations in Julia”. J. Open Res. Softw.5 (2017).
[113] Jarrett Revels and Contributors (2022). code: JuliaCI/BenchmarkTools.jl.
[114] Yunwei Lu, Vinh San Dinh, and Jens Koch. “Increasing memory and runtime performance

of GRAPE for control in large quantum systems”. In Bulletin of the American Physical So-
ciety, APS March Meeting 2022, Chicago. Number 10 in Session Y41 (2022). url: meet-
ings.aps.org/Meeting/MAR22/Session/Y41.10.

[115] Giampaolo Rodola and Contributors (2022). code: giampaolo/psutil.
[116] Will Tebbutt, Frames Catherine White, Miha Zgubic, Wessel Bruinsma, and Contributors (2022).

code: JuliaDiff/FiniteDifferences.jl.
[117] Shai Machnes, Elie Assémat, David J. Tannor, and Frank K. Wilhelm. “Tunable, flexible, and

efficient optimization of control pulses for practical qubits”. Phys. Rev. Lett. 120, 150401 (2018).
[118] Jens Jakob W. H. Sørensen, Mikel O. Aranburu, Till Heinzel, and Jacob F. Sherson. “Quantum

optimal control in a chopped basis: Applications in control of Bose-Einstein condensates”. Phys.
Rev. A 98, 022119 (2018).

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 29

https://dx.doi.org/10.1017/CBO9780511921490
https://dx.doi.org/10.1145/567806.567807
https://dx.doi.org/10.1088/1367-2630/13/7/073029
https://dx.doi.org/10.1103/PhysRevA.77.063412
https://dx.doi.org/10.48550/arXiv.2203.12717
https://dx.doi.org/10.48550/arXiv.2203.12717
https://dx.doi.org/10.1103/PhysRevLett.109.240505
https://dx.doi.org/10.1038/s41534-017-0036-0
https://dx.doi.org/10.1016/j.scib.2021.05.024
https://dx.doi.org/10.1016/j.scib.2021.05.024
https://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
https://dx.doi.org/10.1103/revmodphys.93.025005
https://dx.doi.org/10.1103/PhysRevA.68.052311
https://github.com/qucontrol/weylchamber
https://github.com/JuliaQuantumControl/QuantumControlBase.jl
https://github.com/JuliaQuantumControl/QuantumControlBase.jl
https://dx.doi.org/10.1023/A:1022144002391
https://dx.doi.org/10.1016/0771-050x(80)90013-3
https://dx.doi.org/10.1016/0771-050x(80)90013-3
https://dx.doi.org/10.5334/jors.151
https://github.com/JuliaCI/BenchmarkTools.jl
https://meetings.aps.org/Meeting/MAR22/Session/Y41.10
https://meetings.aps.org/Meeting/MAR22/Session/Y41.10
https://github.com/giampaolo/psutil
https://github.com/JuliaDiff/FiniteDifferences.jl
https://dx.doi.org/10.1103/PhysRevLett.120.150401
https://dx.doi.org/10.1103/PhysRevA.98.022119
https://dx.doi.org/10.1103/PhysRevA.98.022119

[119] Dennis Lucarelli. “Quantum optimal control via gradient ascent in function space and the time-
bandwidth quantum speed limit”. Phys. Rev. A 97, 062346 (2018).

[120] David L. Goodwin and Ilya Kuprov. “Modified Newton-Raphson GRAPE methods for optimal
control of spin systems”. J. Chem. Phys. 144, 204107 (2016).

[121] Keno Fischer and Contributors (2022). code: JuliaDiff/Diffractor.jl.
[122] Daniel M. Reich. “Efficient characterisation and optimal control of open quantum systems.

Mathematical foundations and physical applications”. PhD thesis. Universität Kassel. (2015).
url: d-nb.info/1073888851/34.

[123] Felix Platzer, Florian Mintert, and Andreas Buchleitner. “Optimal dynamical control of many-
body entanglement”. Phys. Rev. Lett. 105, 020501 (2010).

[124] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. “Entanglement-storage units”.
New J. Phys. 14, 093041 (2012).

[125] Patrick Doria, Tommaso Calarco, and Simone Montangero. “Optimal control technique for
many-body quantum dynamics”. Phys. Rev. Lett. 106, 190501 (2011).

[126] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. “Chopped random-basis quan-
tum optimization”. Phys. Rev. A 84, 022326 (2011).

[127] Niklas Rach, Matthias M. Müller, Tommaso Calarco, and Simone Montangero. “Dressing the
chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape”.
Phys. Rev. A 92, 062343 (2015).

[128] Hohjai Lee, Yuan-Chung Cheng, and Graham R. Fleming. “Coherence dynamics in photosyn-
thesis: Protein protection of excitonic coherence”. Science 316, 1462 (2007).

[129] Susana F. Huelga and Martin B. Plenio. “Vibrations, quanta and biology”. Contemp. Phys. 54,
181 (2013).

[130] Michael H. Goerz, Mark A. Kasevich, and Vladimir S. Malinovsky. “Quantum optimal control
for atomic fountain interferometry”. In Proc. SPIE 11700, Optical and Quantum Sensing and
Precision Metrology. (2021). url: doi.org/10.1117/12.2587002.

[131] A. Duspayev and G. Raithel. “Tractor atom interferometry”. Phys. Rev. A 104, 013307 (2021).
[132] Georg A. Raithel, Alisher Duspayev, Bineet Dash, Sebastián C. Carrasco, Michael H. Goerz,

Vladan Vuletic, and Vladimir S. Malinovsky. “Principles of tractor atom interferometry”. Quan-
tum Sci. Technol. (2022).

[133] Pavel Sekatski, Michalis Skotiniotis, Janek Ko lodyński, and Wolfgang Dür. “Quantum metrology
with full and fast quantum control”. Quantum 1, 27 (2017).

[134] Chungwei Lin, Yanting Ma, and Dries Sels. “Optimal control for quantum metrology via Pon-
tryagin’s principle”. Phys. Rev. A 103, 052607 (2021).

[135] Sebastián C. Carrasco, Michael H. Goerz, Zeyang Li, Simone Colombo, Vladan Vuletić, and
Vladimir S. Malinovsky. “Extreme spin squeezing via optimized one-axis twisting and rotations”.
Phys. Rev. Applied 17, 064050 (2022).

[136] Michael H. Goerz, Sebastián C. Carrasco, and Vladimir S. Malinovsky (2022).
code: ARLQCI/2022-04 semiad paper.

Accepted in Quantum 2022-12-01, click title to verify. Published under CC-BY 4.0. 30

https://dx.doi.org/10.1103/physreva.97.062346
https://dx.doi.org/10.1063/1.4949534
https://github.com/JuliaDiff/Diffractor.jl
https://d-nb.info/1073888851/34
https://dx.doi.org/10.1103/physrevlett.105.020501
https://dx.doi.org/10.1088/1367-2630/14/9/093041
https://dx.doi.org/10.1103/PhysRevLett.106.190501
https://dx.doi.org/10.1103/PhysRevA.84.022326
https://dx.doi.org/10.1103/PhysRevA.92.062343
https://dx.doi.org/10.1126/science.1142188
https://dx.doi.org/10.1080/00405000.2013.829687
https://dx.doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1117/12.2587002
https://dx.doi.org/10.1103/physreva.104.013307
https://dx.doi.org/10.1088/2058-9565/ac9429
https://dx.doi.org/10.1088/2058-9565/ac9429
https://dx.doi.org/10.22331/q-2017-09-06-27
https://dx.doi.org/10.1103/physreva.103.052607
https://dx.doi.org/10.1103/physrevapplied.17.064050
https://github.com/ARLQCI/2022-04_semiad_paper

	1 Introduction
	2 Gradient-based Optimal Control
	2.1 Optimization Functionals
	2.2 GRAPE
	2.3 Efficient Evaluation of Final-Time Gradients
	2.4 Krotov's method

	3 Automatic Differentiation
	4 Semi-Automatic Differentiation
	4.1 State functionals
	4.2 Overlap functionals
	4.3 Gate functionals
	4.4 Running costs
	4.5 Semi-AD for Krotov's method and time-continuous schemes
	4.6 Asymptotic memory usage and checkpointing

	5 Optimizing Gate Concurrence for Two Coupled Transmons
	5.1 Two-Qubit Gates on Transmons with a Shared Transmission Line
	5.2 Optimization Functionals
	5.3 Benchmarks

	6 Conclusion and Outlook

