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Abstract
We present principles and possible design concepts for a tractor atom interferometer (TAI) based
on three-dimensional confinement and transport of ultracold atoms. The confinement reduces
device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to
create complex trajectories that allow for optimization to enable fast splitting and recombination,
to suppress detrimental nonadiabatic excitation, and to cancel unwanted sensitivity. Thus, the
design allows for further advancement of compact, high-sensitivity, quantum sensing technology.
In particular, we focus on the implementation of quantum-enhanced accelerometers and
gyroscopes. We discuss TAI protocols for both spin-dependent and scalar trapping potentials.
Using optimal control theory, we demonstrate the splitting of the wave function on a time scale
two orders of magnitude shorter than a previous proposal using adiabatic dynamics, thus
maximizing the time spent at full separation, where the interferometric phase is accumulated. The
performance estimates for TAI give a promising perspective for atom-interferometry-based
sensing, significantly exceeding the sensitivities of current state-of-the-art devices.

1. Introduction

Since their first demonstrations [1–4], atom interferometers [5–7] have become a powerful tool with a
broad range of applications in fundamental physics, e.g., testing the equivalence principle, free fall and
(non)-Newtonian forces [8–15], gravitational-wave detection [16], precision measurements of atomic
constants [17–19] and applied science, e.g., inertial sensing [20–22] and geodesy [21, 23, 24]. Previous
work on AI includes free-space [25–27] and point-source [28–30] AI, as well as guided-wave AI
experiments [31–33] and proposals [34, 35]. Free-space and point-source AIs typically employ atomic
fountains or dropped/freely expanding atom clouds. The point-source method supports efficient readout
and data reduction [36], enables high bandwidth, and affords efficiency in the partial-fringe regime. Atomic
fountains, typically employed in free-space AI, maximize interferometric time and thus increase sensitivity
[25–27], but may require large experimental setups. Guided-wave AIs offer compactness and are often used
as Sagnac rotation sensors, but are susceptible to noise in the guiding potentials. In both free-space and
guided-wave AI, wave-packet dynamics along unconfined degrees of freedom can cause wave-packet
dispersion and failure of the split wave packets to recombine. Coherent recombination of split atomic wave
functions upon their preparation and time-evolution remains challenging in recent AI studies [37–40].
Atom interferometry is a cornerstone of space-based fundamental and applied research in the cold-atom lab
(CAL [41]), where decoherence due to guide- and trap-induced forces and apparatus-size issues, otherwise
encountered due to free fall, are significantly reduced. Wave-packet dispersion and atomic interactions as
well as practical problems associated with efficient closure control still remain even at CAL and its
successors.
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Here, we describe tractor atom interferometry (TAI), a method based upon uninterrupted
three-dimensional (3D) confinement and guiding throughout the AI sequence. The paper is organized as
follows. In section 2 the TAI concept and its key features are explained. In section 3 we discuss an
implementation with spin-dependent optical lattices of 87Rb on the D1 line (5S1/2 ↔ 5P1/2) with
π/2-splitting and recombination pulses driven by a Raman transition. While spin-dependent lattices afford
robust AI center-of-mass (COM) mode splitting [42], they require multiple lattice laser beams and have
other drawbacks, explained in section 3. In section 4 we discuss a method of TAI on a scalar potential on
which rapid COM mode splitting is achieved by a quantum control method. Conclusions and impacts of
TAI are discussed in section 5.

2. Concept

TAI differs from cold-atom free-space, point-source, and guided-wave AI in that the interfering atomic
wave-packet components are transported in conservative, sub-micron to mm-sized, 3D traps that are
formed by tractor potentials that move on predetermined trajectories [42–44]. The traps can be
implemented via optical tweezers (tractor beams) [45–48], optical lattices [49–52], RF-dressed potentials
[53–57] (including ring potentials [57, 58]), optical or magnetic potentials on atom chips [59–61], etc, and
any combination of these [62–64]. Uninterrupted 3D confinement in tractor traps (1) guarantees
recombination, (2) allows arbitrary holding times, directional reversal, complex trajectory patterns for
cancellation of sensitivities to inertial forces that are not of interest, and (3) addresses signal degradation
caused by wave-function dispersion and limitations in recombination control. Ideally, the AI wave-function
components are given by the 3D vibrational ground states of the tractor traps at all times during the AI
sequence. As we will show in this paper, this condition may be relaxed in order to realize fast AI splitting
and recombination with coherent quantum control methods. We further envision TAI initialization with
low-temperature atoms from a Bose–Einstein condensate (BEC) or close to such a state. In that case, TAI is
not expected to suffer excessive coherence loss due to the population of thermal states inside the individual
tractor traps.

In TAI, the tractor controls (laser-beam angles, diameters, powers and phases, electric and magnetic
fields) define pre-determined trajectories, xm(t), of the tractor-potential minima in 3D configuration space.
The trajectories mark the centers of the tractor traps versus time. A pair of traps, indexed by m = 1, 2, are
intersecting at initial and final space–time points, denoted xinit (tinit) and xfinal (tfinal), respectively. This
situation, while classically forbidden due to the uniqueness of classical trajectories, can be realized in
quantum mechanics by employing a pair of spin states with different, state-specific tractor traps on
spin-dependent potentials that coincide at the initial and final space–time points, or by AI splitting and
recombination afforded by quantum tunneling or some other type of coherent dynamics between a pair of
potential wells on a spin-less (scalar) potential. In these two cases, the AI beam-splitters and re-combiners
are implemented via microwave or Raman laser pulses that couple the active spin states, or by quantum
manipulation on a dynamic double-well landscape, respectively.

Following the usual path integral formalism, the interferometric phase of the TAI is given by
ΔΦ = S2−S1

�
, with the actions computed as,

Sm =

∫ tfinal

tinit

L(xm(t), ẋm(t), t)dt, (1)

where L is the Lagrangian function for a trajectory xm(t) [5]. In TAI, the latter is given by the
pre-programmed center locations of the tractor traps [42], so that equation (1) can be evaluated directly,
without having to perform a classical trajectory calculation first. This contrasts with AI-types that have one
or more generalized classical degrees of freedom. In those cases, the classical trajectories xm(t) are not a
priori known and must be computed before equation (1) can be evaluated. It is implicit to the TAI method
that automatic closure of the interferometer can be guaranteed via correct tractor programming.

The dependencies of the differential interferometric phases on rotation and acceleration scale as [5]

ΔΦΩ =
2mKΩ ·A

�

ΔΦa ≈
mKazT

�
. (2)

Here, m is the atom mass, a the acceleration, A the interferometric area, Ω the frame’s angular velocity
measured against an inertial frame, K the number of loops in the TAI sequence, z the well separation along
the acceleration vector, and T is the AI time. The expression for the acceleration phase given in equation (2)
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is only approximate, because details of how the TAI wells separate and recombine play a role. The
acceleration phase can be calculated accurately after the exact tractor trajectories xm(t) have been specified.
A discussion of quantum-projection-limited sensitivity levels for rotation and acceleration is provided in
[42]. Phase sensitivity estimates for some conditions of the presently discussed schemes are given in
section 5.

While 3D confinement makes TAI robust and compact, in comparison with free-space AI, it is noted
that the basic interferometric phase of split wave-packet components under acceleration or gravity is
explained in textbooks, (see, e.g., section 2.6 in [65], where the observation of the gravitational phase in
neutron AI [66] is reviewed in some detail). The differential motion of the traps, xm(t), which gives rise to
the phases in equation (2), must not be confused with any inertial or gravitational sags of the atomic
wave-function components in their individual traps. The differential motion of the tractor traps is at the
core of TAI and lends sensitivity to it according to equation (2), while the in-trap sags are ideally small. The
tractor traps and their trajectories are ideally designed such that phases due to in-trap displacements are
common-mode, and their effects cancel in the net interferometric phase. Also, nonadiabatic excitation of
excited vibrational states in the individual tractor traps is to be minimized by using suitable tractor-trap
trajectories, as discussed in detail in section 4.

TAI differs from other work on cold-atom free-space, point-source, and guided-wave implementations
of AI (see section 1) in that the interfering wave-function components are confined in 3D at all times,
suppressing dispersion and allowing for maximum control. Proper programming of the tractor traps
ensures AI closure. The robustness of TAI closure against tractor-induced and background inertial effects is
limited by the forces of constraint acting on the atoms. The forces of constraint are given by the forces that
the tractor potentials exert on the trapped atoms to keep them on the pre-programmed tractor trajectories,
xm(t). The forces of constraint counter-balance the inertial forces, mẍm(t), in the instrument’s frame of
reference, as well as the inertial forces caused by the motion of the platform the instrument is mounted on.
Uninterrupted 3D confinement of the atomic wave-function components in the tractor traps further
eliminates uncontrolled wave-packet dispersion. Geometry and speeds of the TAI tractor trajectories are
user-programmable and flexible, including multi-loop designs, trap-hold intervals, and twisted patterns.
Hence, TAI can be adapted to a variety of applications.

The TAI concept translates well to microgravity implementations, where the tractor-trap depth can be
relaxed into the sub-Hz regime at times when the forces of constraint become very small. Trap relaxation
efficiently addresses concerns with phase noise in equation (2) caused by trap-depth fluctuations. In relaxed
tractor traps, the AI time, T, may extend to minutes, which translates into greatly enhanced sensitivities.
Also, under such conditions the motional time scale of the atoms in the tractors becomes so slow that
technical noise in the acoustic and higher-frequency bands does not couple to the vibrational dynamics of
the atoms.

Here we consider primarily optical-lattice traps, which can exert forces of constraint that exceed gravity
on Earth by orders of magnitude. Optical-lattice-based TAI may be implemented in scenarios that require
large forces of constraint. As a result, closure in optical-lattice-based TAI can be very robust.

3. TAI in spin-dependent optical lattice

One implementation of TAI is based on the use of spin-dependent optical lattices. Figure 1 outlines the
concept. The lattice spin states are the |1〉 := |F = 1, m = 0〉 (red in figure 1(a)) and |2〉 := |F = 2, m = 0〉
(blue) levels of 87Rb, which are magnetic-field-insensitive in lowest order. The states are trapped in
respective 3D optical lattices with spatial periodicities λm,n, where the first index refers to the ket |m〉 and
the second to the spatial axes, n = x, y and z. For lattices formed by counter-propagating beam pairs the
periodicities are given by half the optical wavelength (λm,opt ≈ 795 nm for the Rb D1 line). The spatial
periodicities may be increased by choosing beam-pair angles θm,n � π, for which λm,n = λm,opt/[2 sin
(θm,n/2)]. It must be ensured that λ1,n = λ2,n =:λn for all n = x, y and z. The lattices for the two spin states
can be translated relative to each other using independently controlled phases, φm,L and φm,R with m = 1, 2
and L = ‘left’ and R = ‘right’ (index n is suppressed for brevity).

An implementation of TAI may proceed as follows. The lattice structures along y are static and are
overlapped at all times. A differential ‘sidekick’ between the lattices for the |1〉 and |2〉 atoms displaces the
respective lattice-trapped wave-function components relative to each other in the x-direction by a distance
Δx = λm,x/2, i.e. half the spatial lattice period along x. In that way, the subsequent long-distance tractor
motion along z will not lead to collisions between the |1〉 and |2〉 atoms. As shown in figure 1(b), the
z-translations form a large AI area in the space–time plane, which is suitable for inertial sensing
(gray areas). The lattice has I × J × K sites, with I, J, and K denoting the number of sites in the x, y and
z-directions, and integer indices (i, j, k) labeling individual sites. Figure 1(b) shows the TAI trajectories for
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Figure 1. Concept of TAI in a spin-dependent lattice. (a) Two different spin states of the ground-state atom, |1〉 and |2〉, which
are here taken to be the |F = 1, m = 0〉 and |F = 2, m = 0〉 levels of 87Rb, are trapped in respective 3D optical lattices. For
simplicity, single atoms in respective individual lattice wells are shown. The confinement of the lattice wells in the y-direction is
static and is, for clarity, suppressed in the figure. The optical lattice in x-direction features a short-distance differential ‘sidekick’
of half the lattice period along x, Δx = λx/2. The sidekick suppresses collisions between the spin states during the TAI
translation sequence, which mostly consists of a long-distance lattice translation in z-direction, shown in panel (b) as a function
of time. The total sequence includes π/2 AC-shift-free microwave or Raman pulses to open and close the interferometer. The
final AI signal is acquired via fluorescence imaging readout after completion of TAI loops. See text for more details.

the corner sites (1, 1, 1) and (I, J, K). The AI sequence involves π/2 AC-shift-free microwave or Raman
pulses to open and close the interferometer. An AI signal can be acquired via imaging of spin-dependent
fluorescence after completion of the TAI loops.

We note that the actual laser-beam frequencies for trapping along x, y and z have to differ by an amount
significantly larger than the vibrational frequencies of the atoms in the lattice traps to exclude any effects of
optical interference beats on the COM (vibrational) wave functions of the trapped atoms. It is expected that
this condition will be satisfied in most practical implementations of optical-lattice-based TAI. Further, since
each lattice site must be split and recombined with itself, accurate control of the lattice phases, φm,L and
φm,R, is critical for successful implementation of lattice-based TAI. The phase controls may be implemented
using optical phase shifters that apply sequences of adiabatic 2π-sweeps and (near-instantaneous) 2π-steps,
with uncertainties at a level of a small fraction of 2π. Alternatively, one may apply optical frequency sweeps;
in that case, the integral of angular-frequency shift over time must maintain an accuracy and a precision of
a small fraction of 2π. These and other technical details will be addressed in future work.

We first discuss the case of spin-dependent lattices formed with a pair of near-resonant laser fields near
the D1 line of Rb (wavelength λm,opt ≈ 795 nm for m = 1 and 2). The two fields are labeled A and B
(see figure 2(a)). Each one of the indicated magnetic-field-insensitive spin states, |1〉 and |2〉, exhibits two
light shifts from fields A and B that we label Sm,A and Sm,B, with m = 1, 2. The net shift for each level then is
Sm = Sm,A + Sm,B. All shifts depend on atom-field detuning. For specificity, we measure the frequency offset
of the A-field relative to the F = 1 to F′ = 2 hyperfine transition of the 87Rb D1 line, and that of the B-field
relative to the F = 2 to F′ = 2 transition (see figure 2(a)). The respective frequency detunings are denoted
ΔA for the A- and ΔB for the B-field. For a sample case of equal electric-field amplitudes of EA = EB =

100 V m−1, in figures 2(b) and (c) we show the level shifts for the spin states |1〉 and |2〉, respectively, and in
figure 2(d) the difference, S2 − S1.

In addition to reducing phase fluctuations caused by differential trap-beam intensity noise, it is
imperative to reduce coherence loss due to photon scattering of trap-beam light. Coherently-split
wave-function components as sketched in figure 1 are susceptible to this type of coherence loss. As a
quantitative figure, we use the photon scattering rate of a coherently split atom averaged over both internal
spin states. Denoting the scattering rate of the atom in pure spin state |m〉 due to fields A and B as γm,A and
γm,B, with m = 1, 2, respectively, the scattering rate in spin state |m〉 is γm = γm,A + γm,B. Assuming that the
atomic wave packets are split evenly between the spin states, the average scattering rate is γAv = (γ1 +

γ2)/2, which is shown in figure 2(e). Unsurprisingly, it is seen in figure 2(e) that the overall scattering is
minimized if both detunings ΔA and ΔB are about equally far away from the nearest hyperfine resonances.
Since the light shifts, their difference, and the photon scattering rates all scale linearly in field intensity, the
results in figure 2 easily scale to configurations with different (but equal) fields, EA = EB. Slight
modification of the calculation also allows one to consider cases with EA �= EB.

Inspection of figure 2 shows that detuning combinations in the (ΔA,ΔB)-plane that minimize photon
scattering under the condition S1 = S2 ≈ 400 Hz have γAv ≈ 12 Hz, so that Sm/γAv ≈ 40. It becomes
obvious that TAI with spin-dependent lattices will require blue-shifted configurations, in which the
light-shift traps localize the atoms at locations of minimal field intensity, hence minimizing the actual
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Figure 2. Panel (a) shows spin states, trapping-field configurations and detuning definitions for a case of magnetic-field-
insensitive spinor TAI in 87Rb. Panels (b) and (c) show the light shifts, S1 and S2, of states |1〉 and |2〉 on the (ΔA ,ΔB)-plane,
respectively, and panel (d) shows the difference S2 − S1. Panel (e) shows the average photon scattering rate (decoherence rate),
γAv, on the (ΔA,ΔB)-plane, and panel (f) the selectivity, η, as defined in the text, of the A- and B-fields in selectively trapping
atoms in states |1〉 and |2〉.

photon scattering rate (decoherence rate). This corresponds with regions within the blue rectangles in
figure 2. At the field minima in low-field-seeking lattice traps one may then expect effective coherence loss
rates on the order of ∼1/500 of the trap depth. While this may suffice for demonstrations, high-precision
AI with long AI times T will require schemes with a lower coherence loss rate during times at which the
wave-function components are held at a large mutual separation. This may be achievable by combinations
of laser-intensity sweeps and laser-frequency sweeps farther away from resonance. The sweeps enable a
reduction of the decoherence rate at times when the wave-function components are spatially separated.
Effectiveness of such methods will require that the wave-function components are spatially separated during
most of the AI time T (which is, typically, the case).

Another figure of merit that applies, in particular during the splitting phase of TAI, is the degree to
which the optical potentials are spin-dependent. For the survey presented here, we compute the
spin-selectivity figure ηm = (±Sm,A ∓ Sm,B)/(Sm,A + Sm,B), where the upper signs apply to state |1〉 and the
lower ones to |2〉. In an ideal scenario of prefect spin selectivity, field A would only trap state |1〉 and not
induce AC shifts in state |2〉, and similarly field B would only trap state |2〉 and not induce AC shifts in state
|1〉. In that case, it would be η1 = η2 = 1. For a comprehensive reading, in figure 2(f) we only show
η = (|η1 − 1|+ |η2 − 1|)/2. Ideal selectivity will then require η = 0, and the more η exceeds the value of 1
the more marginal the spin selectivity will become. The results for η, presented in figure 2(f), show that
ideal spin selectivity only occurs in regions on the (ΔA,ΔB)-plane where the decoherence rate is large. A
compromise between reasonably low decoherence rates and high spin selectivity of the traps occurs near the
left margin of the upper blue rectangle and near the lower margin of the lower blue rectangle in figure 2.

We next consider the π/2 beam-splitting in spinor TAI for opening and closing the interferometer. For
the case considered here, the transition |1〉 → |2〉 can be coherently driven with an RF field at the
ground-state hyperfine splitting frequency of 6.8 GHz or via an optical Raman transition. Since the pulse
time must be much smaller than the AI time T, we envision coupling Rabi frequency, Ω, in the range of
50 kHz. These will enable π/2-pulses with durations � 0.01 ms even for cases of short TAI sequences with
T ∼ 1 ms, as will be required in initial testing of TAI. For specificity, here we consider an optical Raman
coupling with field polarizations as shown in figure 2(a). The Raman transition has two variables, the
Raman detuning, ΔR, and the power splitting ratio between the two fields driving the transition. We seek a
configuration that results in a decent Ω, while minimizing the light shift due to the Raman-transition fields.
In figure 3 we show Ω vs ΔR and the fraction of power in the RA-beam (which connects to the |1〉-state).
The overlay shows the AC shift induced by the Raman beams. For the anticipated pulse durations of ∼0.01
ms, Ω near 50 kHz and an AC shift of � 10 kHz would be desirable. Figure 3 shows that such conditions
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Figure 3. Raman Rabi frequency (colored scale) and AC shifts (contour lines with labels) due to Raman beams near the D1 line
for the transition between the states |1〉 and |2〉 vs intermediate detuning ΔR shown in figure 2(a) and the fraction of power in
the RA-beam (that connects to |1〉). Both fields are σ+-polarized relative to the quantization axis that defines the atomic spin
states |1〉 and |2〉. In this example, the total power of the Raman coupling beams RA and RB is Ptotal = 100 mW, and the assumed
Gaussian beam parameter is w0 = 1 cm.

can be attained with ΔR ≈ 1.5 GHz and about 2/3 of the power in the RA-beam, for the net laser power
and beam size as specified in the caption.

Figures 2 and 3 can be summarized as follows. It is possible to generate spin-dependent lattices for pairs
of magnetic-field-insensitive hyperfine ground states of alkali atoms using two lattice laser fields with
different frequencies. The lattices can be ‘magic’, in a sense that both spin states experience the same
trapping potentials for phases φm,L and φm,R in figure 1 at which the spin-dependent potentials are
overlapped. The magic condition simplifies efficient π/2 AI splitting between the vibrational ground levels
of the spin states |1〉 and |2〉 in their respective lattices, and it reduces AI phase noise in Φ (see equation (2))
caused by laser intensity fluctuations. Decoherence rates due to photon scattering limit the AI time, T, to
values on the order of 500 times the inverse of the trap depth (in Hz). Parameters that yield sufficient spin
selectivity of the traps as well as AC-shift-free π/2 Raman pulses for opening and closing the interferometer
exist. For spinor-TAI with long interferometer times T, required to reach high sensitivities for inertial fields,
it will be necessary to use combinations of laser-intensity sweeps and laser-frequency sweeps to
intermittently reduce decoherence rates due to photon scattering at times when the wave-function
components are spatially separated, in a manner that 3D trapping at all times is maintained. In this
scenario, the lattice tractor traps become spin-independent at the times when the spin components are
separated, because the trap laser fields will be temporarily swept far-off-resonance to reduce the photon
scattering.

While we believe that the spinor TAI method can the realized in the laboratory, it also is prudent to
consider scalar TAI [42] as an alternative method. In scalar TAI, the laser fields can be held
far-off-resonance at all times, allowing one to reduce decoherence caused by photon scattering to practically
zero. In scalar TAI, the trapping laser will be far-off-resonant, allowing the use of high-power, highly
efficient lasers (for instance, YAG lasers or frequency-doubled telecom lasers). There will be only a single
trapping potential, on which single wells are split into double wells. These follow different tractor
trajectories and are recombined back into single wells at AI closing. The challenge in that scheme is to
provide fast splitting without exciting the split wave packets into higher vibrational states of the atoms in
the tractor traps [42]. In the following section we will present a method of scalar TAI that employs rapid
beam splitters that are based on quantum-state engineering methods.

4. Scalar TAI with quantum-state-engineering-enabled beam splitters

In the spin-less (or scalar) case, the goal is to split the wave function into a superposition of each tractor
trap ground state as quickly as possible. This maximizes the available time for accumulating a differential
phase. Mathematically, the goal is to find the tractor functions xm(t) that minimize the functional

J[xm(t)] = |
〈
Ψtgt|Ψ(Ts)

〉
|2, (3)
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where
∣∣Ψtgt

〉
= (|ΨL〉+ |ΨR〉)/

√
2 is the target state, |ΨL,R〉 are the ground states of each trapping potential

when separated at a distance Δz, and |Ψ(Ts)〉 is the system state after allowing a time Ts for splitting. The
functional corresponds to the fidelity at the end of the splitting. To preserve the symmetry between the
arms, we assume x1(t) = −x2(t) = x(t). In this way, we only need to find a single tractor function.
Furthermore, we assume that the trapping potential only allows movement in the z direction so that the
dynamics can be described as x(t) = z(t) ẑ, where ẑ is the unit vector in the z direction. Consequently, the
equation of motion is

i�
∂

∂t
Ψ(z, t) = H(z, t)Ψ(z, t), with

H(z, t) = − �
2

2m

∂2

∂z2
+ V(z − z(t)) + V(z + z(t)),

(4)

where V(z) = −V0 exp
[
−2 log(2)z2/d2

]
is the trapping potential. For a specific example, we use the

parameters V0 = 0.5 MHz for the potential depth, d = 23.5 μm for the full width at half maximum, and
the mass of the 87Rb atom for m. These parameters equal those used in reference [42].

In reference [42], the tractor function z(t) was tuned adiabatically, so that Ψ(z, t) is the ground state of
the shifted V(z(t)) at all times. The time scale for achieving an adiabatic separation is on the order of
seconds, that is, comparable to the accumulation time when the wave packets remain at maximum
separation. When z(t) changes faster than adiabatically in order to minimize Ts and maximize the
accumulation time, the movement can produce unwanted excitations and even cause the particles to escape
the trap. We will demonstrate that coherent quantum control can refocus the dynamics to remove these
nonadiabatic effects, thus achieving fast splitting.

We will use the following approach for coherent quantum control. Given a value of Ts, we set the x and
y components of the tractor function to zero and specify the z component as a piecewise linear function
with n equally spaced segments. Therefore, the tractor function is fully described by n − 1 parameters, i.e.,
the values of the tractor function xj at the carrier points tj. The values at t = 0 and t = Ts are fixed at 0 and
Δz, respectively. The piecewise linear ansatz reduces the dimensionality of the parameter space sufficiently
to find a ‘guess’ tractor function with non-zero fidelity by testing random seeds.

Once we find an appropriate guess solution, we can calculate the gradient ∂ J/∂zj using central finite
differences and use it to feed a quasi-Newton gradient-based optimizer such as L-BFGS-B [67]. Each
evaluation of J runs in parallel using a split-operator scheme [68] to propagate the wave function according
to equation (4). If further refinement is required, we can double the number n of segments, matching the
lower-dimensional solution, and repeat the optimization. Another advantage of this approach is that it
decouples the number of control parameters from the number of time steps. This is useful when the time
scale of the dynamics inside the trap is much faster than the splitting timescale.

Figure 4 illustrates the entire scalar TAI scheme using the coherent quantum control solution, including
both splitting and recombination. The heatmap represents the probability density. The dashed lines show
the tractor function, i.e., the minima of the trapping potentials. The insets show the probability density and
the overall potential (the sum of both trapping potentials) at different time instances. When calculating the
tractor function, we start with 10 segments, corresponding to 11 carrier points distributed over a splitting
time of Ts = 10 ms, and obtain a fidelity of 0.826. We then increase the number of segments to 80
(81 carrier points distributed over the same Ts), to obtain a fidelity of 0.991. This splitting time represents
an improvement over the original spin-less TAI result [42] by two orders of magnitude. As shown in
figure 4, the tractor function does not simply separate both trapping potentials to split the wave function
but oscillates to refocus it and avoid unwanted excitations. After that, the wave function starts to travel with
the minima of the trapping potential to the maximum separation (see the bottom right inset). Before
reaching maximum separation, the tractor function suddenly reduces the separation to decelerate the wave
packets, so they remain in the ground state for a time τ to accumulate the interferometric phase (see middle
insets). Note that the accumulation time is typically several orders of magnitude longer than the splitting
time. Finally, the recombination repeats the splitting process, but running backward. In the end, we obtain a
state that is a linear combination of the ground state and the excited state, with the relative population
depending on the accumulated phase (see top inset).

To demonstrate the performance of the complete scalar TAI interferometric scheme, we propagate the
atomic wave packet according to equation (4). After splitting (Ts = 10 ms in figure 4), we add an
instantaneous phase kick to the wave-function component in the left tractor potential and then calculate the
ground state population after recombination (t = 20 ms +τ in figure 4). In figure 5, we plot the population
of the ground state as a function of the interferometric phase. We obtain a sinusoidal function as expected
for the device. A loss of contrast on the order of 2% due to residual population in other levels is observed.
However, the sensitivity gain will be more significant than the contrast loss as the speed-up allows to

7
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Figure 4. Optimized interferometric sequence for scalar TAI. The heatmap shows the probability density |Ψ(z, t)|2 as the initial
wave packet passes through splitting (first 10 ms), free evolution (not to scale), and recombination (last 10 ms). The dashed lines
show the tractor functions, i.e., the optimized controls. The insets correspond to selected snapshots of the dynamics showing
both the potentials (black lines) and the probability densities (blue lines).

Figure 5. Ground state population of the tractor potential at the final time as a function of the accumulated differential phase
between the left and the right arm of the TAI. The phase was modeled by introducing an instantaneous phase kick to the wave
function in the left potential at t = 10 ms +τ/2, see figure 4.

maintain the atoms separated at the maximum distance for a longer time. Moreover, the contrast loss can
be further reduced by applying, for example, a penalty on the population of unwanted states or more
advanced optimal control techniques [69, 70].

5. Discussion and conclusions

In this work, we describe a concept and some key features of TAI based on 3D-confined guiding of cold
atoms through controllable predetermined channels. Several implementation schemes of TAI have been
discussed to provide a way to estimate AI performance. We have assumed that the atoms are initialized in
the vibrational ground state of the individual optical-lattice wells. This could be accomplished, for instance,
by adiabatic ramp-up of the lattice within a moderately de-compressed BEC. In this way, a Mott-insulator
state with an occupation number of one in each well, the most ideal condition, could be prepared prior to
the TAI splitting [71]. Detailed studies of atomic-temperature and mean-field effects will be the subject of
future investigations. Microgravity will afford the use of extremely shallow and large super-relaxed TAI
wells with a virtual absence of tunneling. Such features promise high levels of performance to address
topics in the areas of fundamental physics and low-g navigation. ‘Magic’ optical-tractor wells with depths
in the sub-Hz regime, prepared with intensity-leveled trapping beams, are expected to afford splitting
times exceeding several minutes, as well as macroscopic distances between coherently split wave-function
components. These capabilities, combined with dispersion-free, 3D uninterrupted wave-function
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confinement shared among all TAI implementations, and with quantum correlated (entangled or
spin-squeezed) atomic ensembles [72] to move toward the Heisenberg quantum-sensing limit, form
prerequisites for future transformative progress in high-precision AI.

TAI offers compactness and can be used as various inertial sensors to measure acceleration, gravity,
and rotation. For a performance estimate of acceleration sensitivity, we use T = 100 s and z = 0.1 m and
a phase resolution of 2π/100 to find δa = 5 × 10−13 g. The spinor case also allows for introducing
spin squeezing, which can further improve sensitivity by an extra order of magnitude, reaching
δa = 5 × 10−14 g. These figures surpass state-of-the-art sensitivities (10−9 g [14]) due to the long hold time
afforded by TAI and the squeezing. For angular frequency sensitivity, we assume an area of A = 0.01 m2, a
phase resolution of 2π/100 and K = 10 loops (which can be traversed within 100 s) to find a resolution of
δΩ = 2 × 10−10 rad s−1, which improves to δΩ = 2 × 10−11 rad s−1 employing spin-squeezed atomic states.
These estimates also compare favorably to the state of the art.

Regarding coherent quantum control, we have demonstrated its ability to speed up the splitting and
recombination dynamics for the spin-less case by two orders of magnitude. Consequently, we foresee at least
a similar speed-up for the spinor and Sagnac interferometers, where nonadiabaticity also plays a role.
Moreover, one could incorporate more elaborate numeric approaches and functionals to maximize fidelity
and increase robustness due to imperfections in the controls. In particular, one could replace the piece-wise
linear function with more flexible parametrizations or arbitrary control functions. These can then be
designed via traditional optimal control methods [73] or more novel machine learning methods such as
reinforcement learning [74].

The precision of AIs enables the search for dark matter [75, 76], the detection of gravitational waves
[16, 76–79], and inertial navigation [21]. There is considerable untapped potential in further advances
within these devices. Improvements in atomic clocks would significantly enhance the long-term stability of
navigation and timekeeping in situations where communication and re-synchronization are limited.
AI-based gravity gradiometers can reach sensitivities of several orders of magnitude beyond conventional
gravity sensors, allowing them to detect dense materials in shipping containers or underground structures.
We believe that AI-based sensors for navigation, fundamental physics research, and remote probing of
celestial bodies via AI-based geodesy will play a crucial role in future NASA missions.

Acknowledgments

The work at the University of Michigan was supported by the NSF Grant No. PHY-2110049. MHG and SCC
acknowledge support by the DEVCOM Army Research Laboratory under Cooperative Agreement Number
W911NF-16-2-0147 and W911NF-21-2-0037, respectively. VSM is grateful for support by a Laboratory
University Collaboration Initiative (LUCI) Grant from OUSD.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Georg Raithel https://orcid.org/0000-0002-2005-8440
Alisher Duspayev https://orcid.org/0000-0001-5322-5762
Sebastián C Carrasco https://orcid.org/0000-0002-6512-9695
Michael H Goerz https://orcid.org/0000-0003-2839-9976
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