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Abstract
We present principles and possible design concepts for a tractor atom interferometer (TAI) based
on three-dimensional con“nement and transport of ultracold atoms. The con“nement reduces
device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to
create complex trajectories that allow for optimization to enable fast splitting and recombination,
to suppress detrimental nonadiabatic excitation, and to cancel unwanted sensitivity. Thus, the
design allows for further advancement of compact, high-sensitivity, quantum sensing technology.
In particular, we focus on the implementation of quantum-enhanced accelerometers and
gyroscopes. We discuss TAI protocols for both spin-dependent and scalar trapping potentials.
Using optimal control theory, we demonstrate the splitting of the wave function on a time scale
two orders of magnitude shorter than a previous proposal using adiabatic dynamics, thus
maximizing the time spent at full separation, where the interferometric phase is accumulated. The
performance estimates for TAI give a promisingperspective for atom-interferometry-based
sensing, signi“cantly exceeding the sensitivities of current state-of-the-art devices.

1. Introduction

Since their “rst demonstrations [1…4], atom interferometers [5…7] have become a powerful tool with a
broad range of applications in fundamental physics, e.g., testing the equivalence principle, free fall and
(non)-Newtonian forces [8…15], gravitational-wave detection [16], precision measurements of atomic
constants [17…19] and applied science, e.g., inertial sensing [20…22] and geodesy [21, 23, 24]. Previous
work on AI includes free-space [25…27] and point-source [28…30] AI, as well as guided-wave AI
experiments [31…33] and proposals [34, 35]. Free-space and point-source AIs typically employ atomic
fountains or dropped/freely expanding atom clouds. The point-source method supports ef“cient readout
and data reduction [36], enables high bandwidth, and affords ef“ciency in the partial-fringe regime. Atomic
fountains, typically employed in free-space AI, maximizeinterferometric time and thus increase sensitivity
[25…27], but may require large experimental setups. Guided-wave AIs offer compactness and are often used
as Sagnac rotation sensors, but are susceptible to noise in the guiding potentials. In both free-space and
guided-wave AI, wave-packet dynamics along uncon“ned degrees of freedom can cause wave-packet
dispersion and failure of the split wave packets to recombine. Coherent recombination of split atomic wave
functions upon their preparation and time-evolution remains challenging in recent AI studies [37…40].
Atom interferometry is a cornerstone of space-based fundamental and applied research in the cold-atom lab
(CAL [41]), where decoherence due to guide- and trap-induced forces and apparatus-size issues, otherwise
encountered due to free fall, are signi“cantly reduced. Wave-packet dispersion and atomic interactions as
well as practical problems associated with ef“cient closure control still remain even at CAL and its
successors.
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Here, we describe tractor atom interferometry (TAI), a method based upon uninterrupted
three-dimensional (3D) con“nement and guiding throughout the AI sequence. The paper is organized as
follows. In section2 the TAI concept and its key features are explained. In section3 we discuss an
implementation with spin-dependent optical lattices of87Rb on the D1 line (5S1/ 2 � 5P1/ 2) with
�/ 2-splitting and recombination pulses driven by a Raman transition. While spin-dependent lattices afford
robust AI center-of-mass (COM) mode splitting [42], they require multiple lattice laser beams and have
other drawbacks, explained in section3. In section4 we discuss a method of TAI on a scalar potential on
which rapid COM mode splitting is achieved by a quantum control method. Conclusions and impacts of
TAI are discussed in section5.

2. Concept

TAI differs from cold-atom free-space, point-source, and guided-wave AI in that the interfering atomic
wave-packet components are transported in conservative, sub-micron to mm-sized, 3D traps that are
formed by tractor potentials that move on predetermined trajectories [42…44]. The traps can be
implemented via optical tweezers (tractor beams) [45…48], optical lattices [49…52], RF-dressed potentials
[53…57] (including ring potentials [57, 58]), optical or magnetic potentials on atom chips [59…61], etc, and
any combination of these [62…64]. Uninterrupted 3D con“nement in tractor traps (1) guarantees
recombination, (2) allows arbitrary holding times, directional reversal, complex trajectory patterns for
cancellation of sensitivities to inertial forces that are not of interest, and (3) addresses signal degradation
caused by wave-function dispersion and limitations in recombination control. Ideally, the AI wave-function
components are given by the 3D vibrational ground states of the tractor traps at all times during the AI
sequence. As we will show in this paper, this condition may be relaxed in order to realize fast AI splitting
and recombination with coherent quantum control methods. We further envision TAI initialization with
low-temperature atoms from a Bose…Einstein condensate (BEC) or close to such a state. In that case, TAI is
not expected to suffer excessive coherence loss due to the population of thermal states inside the individual
tractor traps.

In TAI, the tractor controls (laser-beam angles, diameters, powers and phases, electric and magnetic
“elds) de“ne pre-determined trajectories,xm(t), of the tractor-potential minima in 3D con“guration space.
The trajectories mark the centers of the tractor traps versus time. A pair of traps, indexed bym = 1, 2, are
intersecting at initial and “nal space…time points, denotedxinit (tinit ) andx“nal (t“nal ), respectively. This
situation, while classically forbidden due to the uniqueness of classical trajectories, can be realized in
quantum mechanics by employing a pair of spin states with different, state-speci“c tractor traps on
spin-dependent potentials that coincide at the initial and “nal space…time points, or by AI splitting and
recombination afforded by quantum tunneling or some other type of coherent dynamics between a pair of
potential wells on a spin-less (scalar) potential. In these two cases, the AI beam-splitters and re-combiners
are implemented via microwave or Raman laser pulses that couple the active spin states, or by quantum
manipulation on a dynamic double-well landscape, respectively.

Following the usual path integral formalism, the interferometric phase of the TAI is given by
�� = S2ŠS1

� , with the actions computed as,

Sm =
� t“nal

tinit

L (xm(t), �xm(t), t)dt, (1)

whereL is the Lagrangian function for a trajectoryxm(t) [ 5]. In TAI, the latter is given by the
pre-programmed center locations of the tractor traps [42], so that equation (1) can be evaluated directly,
without having to perform a classical trajectory calculation “rst. This contrasts with AI-types that have one
or more generalized classical degrees of freedom. In those cases, the classical trajectoriesxm(t) are nota
priori known and must be computedbeforeequation (1) can be evaluated. It is implicit to the TAI method
that automatic closure of the interferometer can be guaranteed via correct tractor programming.

The dependencies of the differential interferometric phases on rotation and acceleration scale as [5]

�� � =
2mK� · A

�

�� a �
mKazT

�
. (2)

Here,m is the atom mass,a the acceleration,A the interferometric area,� the frame•s angular velocity
measured against an inertial frame,K the number of loops in the TAI sequence,z the well separation along
the acceleration vector, andT is the AI time. The expression for the acceleration phase given in equation (2)
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is only approximate, because details of how the TAI wells separate and recombine play a role. The
acceleration phase can be calculated accurately after the exact tractor trajectoriesxm(t) have been speci“ed.
A discussion of quantum-projection-limited sensitivity levels for rotation and acceleration is provided in
[42]. Phase sensitivity estimates for some conditions of the presently discussed schemes are given in
section5.

While 3D con“nement makes TAI robust and compact, in comparison with free-space AI, it is noted
that the basic interferometric phase of split wave-packet components under acceleration or gravity is
explained in textbooks, (see, e.g., section 2.6 in [65], where the observation of the gravitational phase in
neutron AI [66] is reviewed in some detail). The differential motion of the traps,xm(t), which gives rise to
the phases in equation (2), must not be confused with any inertial or gravitational sags of the atomic
wave-function components in their individual traps. The differential motion of the tractor traps is at the
core of TAI and lends sensitivity to it according to equation (2), while the in-trap sags are ideally small. The
tractor traps and their trajectories are ideally designed such that phases due to in-trap displacements are
common-mode, and their effects cancel in the net interferometric phase. Also, nonadiabatic excitation of
excited vibrational states in the individual tractor traps is to be minimized by using suitable tractor-trap
trajectories, as discussed in detail in section4.

TAI differs from other work on cold-atom free-space,point-source, and guided-wave implementations
of AI (see section1) in that the interfering wave-function components are con“ned in 3D at all times,
suppressing dispersion and allowing for maximum control. Proper programming of the tractor traps
ensures AI closure. The robustness of TAI closure against tractor-induced and background inertial effects is
limited by the forces of constraint acting on the atoms. The forces of constraint are given by the forces that
the tractor potentials exert on the trapped atoms to keep them on the pre-programmed tractor trajectories,
xm(t). The forces of constraint counter-balance the inertial forces,mẍm(t), in the instrument•s frame of
reference, as well as the inertial forces caused by the motion of the platform the instrument is mounted on.
Uninterrupted 3D con“nement of the atomic wave-function components in the tractor traps further
eliminates uncontrolled wave-packet dispersion. Geometry and speeds of the TAI tractor trajectories are
user-programmable and ”exible, including multi-loop designs, trap-hold intervals, and twisted patterns.
Hence, TAI can be adapted to a variety of applications.

The TAI concept translates well to microgravity implementations, where the tractor-trap depth can be
relaxed into the sub-Hz regime at times when the forces of constraint become very small. Trap relaxation
ef“ciently addresses concerns with phase noise in equation (2) caused by trap-depth ”uctuations. In relaxed
tractor traps, the AI time,T, may extend to minutes, which translates into greatly enhanced sensitivities.
Also, under such conditions the motional time scale of the atoms in the tractors becomes so slow that
technical noise in the acoustic and higher-frequency bands does not couple to the vibrational dynamics of
the atoms.

Here we consider primarily optical-lattice traps, which can exert forces of constraint that exceed gravity
on Earth by orders of magnitude. Optical-lattice-based TAI may be implemented in scenarios that require
large forces of constraint. As a result, closure in optical-lattice-based TAI can be very robust.

3. TAI in spin-dependent optical lattice

One implementation of TAI is based on the use of spin-dependent optical lattices. Figure1 outlines the
concept. The lattice spin states are the|1� := |F = 1,m = 0� (red in “gure 1(a)) and|2� := |F = 2,m = 0�
(blue) levels of87Rb, which are magnetic-“eld-insensitive in lowest order. The states are trapped in
respective 3D optical lattices with spatial periodicities� m,n, where the “rst index refers to the ket|m� and
the second to the spatial axes,n = x, y andz. For lattices formed by counter-propagating beam pairs the
periodicities are given by half the optical wavelength (� m,opt � 795 nm for the Rb D1 line). The spatial
periodicities may be increased by choosing beam-pair angles� m,n � � , for which� m,n = � m,opt/ [2 sin
(� m,n/ 2)]. It must be ensured that� 1,n = � 2,n = : � n for all n = x, y andz. The lattices for the two spin states
can be translated relative to each otherusing independently controlled phases,� m,L and� m,R with m = 1, 2
and L= •left• and R= •right• (indexn is suppressed for brevity).

An implementation of TAI may proceed asfollows. The lattice structures alongy are static and are
overlapped at all times. A differential •sidekick• between the lattices for the|1� and|2� atoms displaces the
respective lattice-trapped wave-function components relative to each other in thex-direction by a distance
� x = � m,x/ 2, i.e. half the spatiallattice period alongx. In that way, the subsequent long-distance tractor
motion alongzwill not lead to collisions between the|1� and|2� atoms. As shown in “gure1(b), the
z-translations form a large AI area in the space…time plane, which is suitable for inertial sensing
(gray areas). The lattice hasI × J× K sites, withI, J, andK denoting the number of sites in thex, y and
z-directions, and integer indices (i, j, k) labeling individual sites. Figure1(b) shows the TAI trajectories for
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Figure 1. Concept of TAI in a spin-dependent lattice. (a) Two different spin states of the ground-state atom,|1� and|2� , which
are here taken to be the|F = 1,m = 0� and|F = 2,m = 0� levels of87Rb, are trapped in respective 3D optical lattices. For
simplicity, single atoms in respective individual lattice wells are shown. The con“nement of the lattice wells in they-direction is
static and is, for clarity, suppressed in the “gure. The optical lattice inx-direction features a short-distance differential •sidekick•
of half the lattice period alongx, � x = � x/ 2. The sidekick suppresses collisions between the spin states during the TAI
translation sequence, which mostly consists of a long-distance lattice translation inz-direction, shown in panel (b) as a function
of time. The total sequence includes�/ 2 AC-shift-free microwave or Raman pulses to open and close the interferometer. The
“nal AI signal is acquired via ”uorescence imaging readout after completion of TAI loops. See text for more details.

the corner sites (1, 1, 1) and (I, J,K). The AI sequence involves�/ 2 AC-shift-free microwave or Raman
pulses to open and close the interferometer. An AI signal can be acquired via imaging of spin-dependent
”uorescence after completion of the TAI loops.

We note that the actual laser-beam frequencies for trapping alongx, y andz have to differ by an amount
signi“cantly larger than the vibrational frequencies of the atoms in the lattice traps to exclude any effects of
optical interference beats on the COM (vibrational) wave functions of the trapped atoms. It is expected that
this condition will be satis“ed in most practical implementations of optical-lattice-based TAI. Further, since
each lattice site must be split and recombined withitself, accurate control of the lattice phases,� m,L and
� m,R, is critical for successful implementation of lattice-based TAI. The phase controls may be implemented
using optical phase shifters that apply sequences of adiabatic 2� -sweeps and (near-instantaneous) 2� -steps,
with uncertainties at a level of a small fraction of 2� . Alternatively, one may apply optical frequency sweeps;
in that case, the integral of angular-frequency shift over time must maintain an accuracy and a precision of
a small fraction of 2� . These and other technical details will be addressed in future work.

We “rst discuss the case of spin-dependent lattices formed with a pair of near-resonant laser “elds near
the D1 line of Rb (wavelength� m,opt � 795 nm form = 1 and 2). The two “elds are labeledA andB
(see “gure2(a)). Each one of the indicated magnetic-“eld-insensitive spin states,|1� and|2� , exhibits two
light shifts from “eldsA andB that we labelSm,A andSm,B, with m = 1, 2. The net shift for each level then is
Sm = Sm,A + Sm,B. All shifts depend on atom-“eld detuning. For speci“city, we measure the frequency offset
of theA-“eld relative to theF = 1 to F� = 2 hyper“ne transition of the87Rb D1 line, and that of theB-“eld
relative to theF = 2 to F� = 2 transition (see “gure2(a)). The respective frequency detunings are denoted
� A for theA- and � B for theB-“eld. For a sample case of equal electric-“eld amplitudes ofEA = EB =
100 V mŠ1, in “gures2(b) and (c) we show the level shifts for the spin states|1� and|2� , respectively, and in
“gure 2(d) the difference,S2 Š S1.

In addition to reducing phase ”uctuations caused by differential trap-beam intensity noise, it is
imperative to reduce coherence loss due to photon scattering of trap-beam light. Coherently-split
wave-function components as sketched in “gure1 are susceptible to this type of coherence loss. As a
quantitative “gure, we use the photon scattering rateof a coherently split atom averaged over both internal
spin states. Denoting the scattering rate of the atom in pure spin state|m� due to “eldsA andB as� m,A and
� m,B, with m = 1, 2, respectively, the scattering rate in spin state|m� is � m = � m,A + � m,B. Assuming that the
atomic wave packets are split evenly between the spin states, the average scattering rate is� Av = (� 1 +
� 2)/ 2, which is shown in “gure2(e). Unsurprisingly, it is seen in “gure2(e) that the overall scattering is
minimized if both detunings� A and� B are about equally far away from the nearest hyper“ne resonances.
Since the light shifts, their difference, and the photon scattering rates all scale linearly in “eld intensity, the
results in “gure2 easily scale to con“gurations with different (but equal) “elds,EA = EB. Slight
modi“cation of the calculation also allows one to consider cases withEA �= EB.

Inspection of “gure2 shows that detuning combinations in the (� A, � B)-plane that minimize photon
scattering under the conditionS1 = S2 � 400 Hz have� Av � 12 Hz, so thatSm/� Av � 40. It becomes
obvious that TAI with spin-dependent lattices will require blue-shifted con“gurations, in which the
light-shift traps localize the atoms at locations of minimal “eld intensity, hence minimizing the actual
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