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gg κ

γ
[from Schuster. Phd Thesis. Yale (2007)]

Jaynes-Cumming Hamiltonian

Ĥ =
ωa

2
σ̂z + ωc â

†â + g
(
âσ̂+ + â†σ̂−

)
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SC circuit toolbox: capacitors, inductors, Josephson elements

superconductivity:
macroscopic quantum coherence

Josephson effect: anharmonic oscillator
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SC circuit toolbox: capacitors, inductors, Josephson elements
Josephson junctionsuperconducting phase qudit

taken from: Y. Shalibo, PhD thesis (Katz group, Hebrew U Jerusalem)

Hamiltonian of a flux-biased phase qudit (F0 = h/2e)

Ĥ = �2e2

C
d2

dd2 �
IcF0

2p
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d̂ . . . gauge-invariant phase difference across Josephson junction

b= a fictitious particle of mass C
2e2 , moving in a one-dimensional

potential U(d̂) with ’position’ coordinate d̂

[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

capacitance
tunneling

I (t) = IC sin(φ(t)); U(t) =
~
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types of superconducting qubits

standard SC qubits: charge qubit, flux qubit, phase qubit

Φ

Figure 4: The three basic superconducting qubits. a) Cooper pair box (prototy-
pal charge qubit), b) RF-SQUID (prototypal flux qubit) and c) current-biased
junction (prototypal phase qubit). The charge qubit and the flux qubit requires
small junctions fabricated with e-beam lithography while the phase qubit can
be fabricated with conventional optical lithography.

We now limit ourselves to the two lowest levels of the box. Near the degen-
eracy point Ng = 1/2 where the electrostatic energy of the of the two charge
states |N = 0⟩ and |N = 1⟩ are equal, we get the reduced hamiltonian [19, 21]

Hqubit = −Ez (σZ + XcontrolσX) (8)

where, in the limit EJ/EC ≪ 1, Ez = EJ/2and Xcontrol = 2EC/EJ (1/2 − Ng).
In Eq. (8), σZ and σX refer to the Pauli spin operators. Note that the X
direction is chosen along the charge operator, the variable of the box we can
naturally couple to.

If we plot the energy of the eigenstates of (8) as a function of the control
parameter Xcontrol, we obtain the universal level repulsion diagram shown in
Fig. 7. Note that the minimum energy splitting is given by EJ . Comparing
Eq. (8) with the spin hamiltonian in NMR, we see that EJ plays the role of the
Zeeman field while the electrostatic energy plays the role of the transverse field.

θ

Figure 5: Potential landscape for the phase in a Cooper pair box (thick solid
line). The first few levels for EJ/EC = 1 and Ng = 1/2 are indicated by thin
horizontal solid lines.
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EC > EJ EJ > EC EJ � EC
[from Devoret et al. arXiv:0411174 (2004)]
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Φ Φ

Figure 8: Schematic potential energy landcape for the RF-SQUID.

H =
q2

2CJ
+

φ2

2L
− EJ cos

[
2e

!
(φ − Φext)

]
(9)

We are taking here as degrees of freedom the integral φ of the voltage across
the inductance L, i.e. the flux through the superconducting loop, and its con-
jugate variable, the charge q on the capacitance CJ ; they obey [φ, q] = i!. Note
that in this representation, the phase θ, corresponding to the branch flux across
the Josephson element, has been eliminated. Note also that the flux φ, in con-
trast to the phase θ, takes its values on a line and not on a circle. Likewise, its
conjugate variable q, the charge on the capacitance, has continuous eigenvalues
and not integer ones like N . Note that we now have three adjustable energy
scales: EJ , ECJ = (2e)2/2CJ and EL = Φ2

0/2L.
The potential in the flux representation is schematically shown in Fig. 8

together with the first few levels, which have been seen experimentally for the
first time by the SUNY group [24]. Here, no analytical expressions exist for the
eigenvalues and the eigenfunctions of the problem, which has two aspect ratios:
EJ/ECJ and λ = LJ/L − 1.

Whereas in the Cooper box the potential is cosine-shaped and has only one
well since the variable θ is 2π-periodic, we have now in general a parabolic
potential with a cosine corrugation. The idea here for curing the detrimental
effect of the offset charge fluctuations is very different than in the box. First
of all Qstat

r has been neutralized by shunting the 2 metallic electrodes of the
junction by the superconducting wire of the loop. Then, the ratio EJ/ECJ is
chosen to be much larger than unity. This tends to increase the relative strength
of quantum fluctuations of q, making offset charge fluctuations ∆Qr small in
comparison. The resulting loss in the non-linearity of the first levels is compen-
sated by taking λ close to zero and by flux-biasing the device at the half-flux
quantum value Φext = Φ0/2. Under these conditions, the potential has two

18

δ π

Figure 9: Tilted washboard potential of the current-biased Josephson junction.

In practice, like in the two previous cases, the transition frequency ω01/2π
falls in the 5-20 GHz range. This frequency is only determined by material
properties of the barrier, since the product CJ LJ does not depend on junction
area. The number of levels in the well is typically ∆U/!ωp ≈ 4.

Setting the bias current at a value I and calling ∆I the variations of the dif-
ference I − I0 (originating either in variations of I or I0), the qubit Hamiltonian
is given by

Hqubit =
!ω01

2
σZ +

√
!

2ω01CJ
∆I(σX + χσZ), (13)

where χ =
√

!ω01/3∆U ≃ 1/4 for typical operating parameters. In contrast
with the flux and phase qubit circuits, the current-biased Josephson junction
does not have a bias point where the 0→1 transition frequency has a local
minimum. The hamiltonian cannot be cast into the NMR-type form of Eq. (8).
However, a sinusoidal current signal ∆I (t) ∼ sinω01t can still produce σX

rotations, whereas a low-frequency signal produces σZ operations [27].
In analogy with the preceding circuits, qubits derived from this circuit

and/or having the same phase potential shape and qubit properties have been
nicknamed “phase qubits” since the controlled variable is the phase (the X
pseudo-spin direction in hamiltonian (13)).

6.4 Tunability versus sensitivity to noise in control pa-
rameters

The reduced two-level hamiltonians Eqs. (8,10) and (13) have been tested thor-
oughly and are now well-established. They contain the very important para-
metric dependence of the coefficient of σX , which can be viewed on one hand as
how much the qubit can be tuned by an external control parameter, and on the
other hand as how much it can be dephased by uncontrolled variations in that

21
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v

v

a) b)

cg1

cg2

cs

Figure 4.13: a) Sketch of the transmon inside of a resonator. The transmon is essentially a CPB
with a large geometric gate capacitance which lowers EC while maintaining β close to unity. The
finger capacitor can be used as a shunt capacitance to lower β if unity coupling isn’t desired. b)
Simplified circuit diagram of the transmon which looks very similar to the CPB circuit diagram
but with larger values for the capacitors. For a more complete circuit diagram and discussion of
capacitance ratios see section 5.3.

4.3.3 Transmon as a Josephson Oscillator

The transmon appears to have the correct spectral characteristics for a qubit (high Q and sufficient

anharmonicity) but though topologically the same as a CPB, it is clearly a new type of qubit

demanding a new approach for understanding it. The name Cooper pair box arises from thinking

about the qubit as a pair of islands where the bit is the location of a single Cooper pair, and intuition

for this device is gained from modeling it as two capacitors and small coupling between them. At

high EJ/EC the CPB does not behave like this at all, and is more closely related to an LC oscillator.

The transmon can be thought of as an oscillator based on the Josephson junction and a geo-

metrically defined capacitor (see Fig. 4.13). The argument will proceed similarly to that of the LC

oscillator in 3.1.8, but with the inductor replaced by a Josephson element described by the Josephson

relations [Tinkham2004]

2eV = !
∂θ

∂t
(4.63)

I = Ic sin θ (4.64)

where Ic is the critical current and θ is the superconducting phase difference across the junction.

To reveal the Josephson junction’s inductive nature, one can find the relation between voltage and

[from Schuster. Phd Thesis. Yale (2007)]



transmon Hamiltonian

Anharmonic Oscillator

Ĥ = 4EC (n̂− ng )2 − EJ cos φ̂ forEJ � EC

Expand cos φ̂ to 1− φ2

2 + φ4

24 , using HO b̂
†
, b̂ (Duffing Oscillator)

Ĥ =
√

8ECEJ b̂
†
b̂− EC

12

(
b̂
†

+ b̂
)4

+ const.

Leading order perturbation theory on quartic term:

Ĥ = ωqb̂
†
b̂ +

α

2
b̂
†
b̂
†
b̂b̂

with ωq ≈
√

8EJEC , α ≈ −Ec .

Example: α = −300 MHz, EJ/EC = 50, ωq = 6 GHz
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Ĥ = 4EC (n̂− ng )2 − EJ cos φ̂ forEJ � EC

Expand cos φ̂ to 1− φ2

2 + φ4

24 , using HO b̂
†
, b̂ (Duffing Oscillator)
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coplanar waveguide resonator
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50 µm

5 µm

1 µma

b c

Figure 1.8: a. Optical image of transmission line resonator. The metal is superconducting niobium,
and the substrate is silicon. b. Optical microscope image of one of the coupling capacitors (metal is
beige, substrate is green). c. False colored scanning electron micrograph of Cooper pair box (blue)
inside the cavity (beige) on the silicon substrate (green). The box consists of two aluminum islands
(blue) connected by a small tunnel junction (the overlap of the two fingers on the thin island).

which has a center-pin and a coaxial shield separated by an insulator (see Fig. 1.7). As anyone

who has tried to install cable knows, if there is a gap in the cable the signal is reflected, and if the

connection is almost but not quite right there can be interference, seen on the television as waves in

the picture. In a transmission line resonator, gaps in the center-pin at either end of the resonator

act as mirrors for the microwave photons inside. In TV, cable signals can only travel the line a few

times before being absorbed as heat, but in a superconducting transmission line, there are almost

no losses and the gaps can be designed to cause anywhere from a few hundred to nearly a million

reflections before allowing the photons to escape. This shows that the losses in the superconductor

are so low that a microwave photon can travel tens of kilometers (106 cm = 10 km) without being

absorbed. Thus the CPW transmission lines act much like optical fibers do for visible photons.

Microwave resonators have long been used as filters to block all but a narrow band of frequencies.

This filtering is the circuit analogy to the suppression of spontaneous decay in atomic cavity QED,

and it helps protect the qubit from undesired environmental noise. One of the reasons it is so difficult

to maintain coherence in circuits is that with many wires and other circuits around it is difficult

[from Schuster. Phd Thesis. Yale (2007)]
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distributed element description
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L = λ = 25 mm

2 µm

5 µm

Figure 1.7: Schematic representation of cavity QED with superconducting circuits. Cooper pair
box (green) at the center of a coplanar waveguide resonator (blue). The cavity resonant frequency
(∼ 5 GHz) is set by the length between two gap capacitors at the ends, which act as highly reflective
microwave mirrors. The cavity is driven from one side and the transmitted signal is measured on
the other side. The box is placed at an antinode in the spatial voltage profile for the first harmonic
(pink). The system can be accurately modeled as a series of lumped element circuits.

advent of cavity QED. The primary contribution of this thesis is to apply the notions of cavity QED

to the study of quantum circuits, a notion we dub “Circuit Quantum Electrodynamics”.

Though microwaves do not seem to have much in common with visible light, they are both

electromagnetic fields and thus composed of photons. Even when studying qubits, the quantum

properties of microwaves are often ignored. However cavity QED shows that these properties can be

an asset rather than just a complication, enabling one to engineer the decoherence properties of these

circuits, making them decay slower or faster. By embracing the quantum nature of microwaves, we

are able to solve many problems associated with measuring quantum circuits without exposing them

to sources of decoherence. We can protect them from radiative decay, and use single microwave

photons as a means of coupling distant qubits together.

The circuit QED architecture [Blais2004] places a superconducting qubit, which can be thought

of as an artificial atom, inside of a transmission line resonator that forms a microwave cavity (see

Fig. 1.7).

The key to this cavity QED readout is the use of a one-dimensional coplanar waveguide resonator

as a cavity, which is discussed in detail in sections 3.1, 5.1.4, and 7.1. The coplanar waveguide

(transmission line) can be thought of as a two-dimensional version of a coaxial cable for television,

[from Schuster. Phd Thesis. Yale (2007)]

microwave pulses ⇒ lump element description inaccurate

⇒ series of infinitessimal LC circuits
see Blais et al, PRA 69, 062320 (2004)

Michael Goerz • Intro to cQED 11 / 20



distributed element description
CHAPTER 1. INTRODUCTION 30

L = λ = 25 mm

2 µm

5 µm

Figure 1.7: Schematic representation of cavity QED with superconducting circuits. Cooper pair
box (green) at the center of a coplanar waveguide resonator (blue). The cavity resonant frequency
(∼ 5 GHz) is set by the length between two gap capacitors at the ends, which act as highly reflective
microwave mirrors. The cavity is driven from one side and the transmitted signal is measured on
the other side. The box is placed at an antinode in the spatial voltage profile for the first harmonic
(pink). The system can be accurately modeled as a series of lumped element circuits.

advent of cavity QED. The primary contribution of this thesis is to apply the notions of cavity QED

to the study of quantum circuits, a notion we dub “Circuit Quantum Electrodynamics”.

Though microwaves do not seem to have much in common with visible light, they are both

electromagnetic fields and thus composed of photons. Even when studying qubits, the quantum

properties of microwaves are often ignored. However cavity QED shows that these properties can be

an asset rather than just a complication, enabling one to engineer the decoherence properties of these

circuits, making them decay slower or faster. By embracing the quantum nature of microwaves, we

are able to solve many problems associated with measuring quantum circuits without exposing them

to sources of decoherence. We can protect them from radiative decay, and use single microwave

photons as a means of coupling distant qubits together.

The circuit QED architecture [Blais2004] places a superconducting qubit, which can be thought

of as an artificial atom, inside of a transmission line resonator that forms a microwave cavity (see

Fig. 1.7).

The key to this cavity QED readout is the use of a one-dimensional coplanar waveguide resonator

as a cavity, which is discussed in detail in sections 3.1, 5.1.4, and 7.1. The coplanar waveguide

(transmission line) can be thought of as a two-dimensional version of a coaxial cable for television,

[from Schuster. Phd Thesis. Yale (2007)]

microwave pulses ⇒ lump element description inaccurate

⇒ series of infinitessimal LC circuits
see Blais et al, PRA 69, 062320 (2004)

Michael Goerz • Intro to cQED 11 / 20



combined system

Michael Goerz • Intro to cQED 12 / 20



coupling the transmon to a cavity
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2

CPB, one can greatly reduce charge noise sensitivity in
the qubit while only sacrificing a small amount of anhar-
monicity. In fact, the charge dispersion can be so strongly
suppressed that the qubit becomes practically insensitive
to charge. This eliminates the need for individual electro-
static gates and tuning to a charge sweet spot, and avoids
the susceptibility to quasiparticle poisoning, which both
benefit the scaling to larger numbers of qubits. Amaz-
ingly, the transmon can at the same time increase the
strength of electrical coupling between qubits, or between
a qubit and a transmission line cavity serving as a bus.

Although the transmon has an EJ/EC ratio in between
that of typical charge qubits and typical phase qubits, it
is important to emphasize that the transmon is very dif-
ferent from both the CPB and phase qubits, including
the capacitively shunted phase qubit proposed recently
by Steffen et al. [17]. In the transmon, it is the natural
anharmonicity of the cosine potential which allows qubit
operations, whereas in the phase qubit, the EJ/EC ratio
is so large that the required anharmonicity can only be
restored by driving a current I very close to IC through
the system, creating a washboard potential, see Refs. [5],
[6] and [7] for recent reviews. The device presented in
Ref. [17] operated at an energy ratio of EJ/EC ∼ 2×104,
whereas the transmon will typically involve ratios of the
order of several tens up to several hundreds and is op-
erated without the need for any dc connections to the
rest of the circuit. Thus, the transmon is a new type
of superconducting qubit that should fix the main weak-
ness of the CPB by featuring an exponential gain in the
insensitivity to charge noise. The favorable insensitivity
of CPBs to other noise sources such as critical current
and flux noise is maintained (and further improved) in
the transmon system, rendering it a very promising can-
didate for the next generation of qubits (see Table I). A
complementary proposal for using a capacitor to modify
the EJ/EC ratio in superconducting flux qubits is put
forward in Ref. [18].

The outline of the paper is as follows. In Section II A,
we introduce the transmon and its effective quantum
circuit. The solution of the corresponding Schrödinger
equation and an analysis of its asymptotics enable a
quantitative discussion of the charge dispersion and the
anharmonicity in Sections II B and II C, respectively.
Section II E provides additional information about the
flux degree of freedom in the split transmon, and the
role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics (circuit-QED) physics
[19] of the transmon is investigated in Section III, where
we show that despite the smallness of the charge dis-
persion, the transmon is expected to reach the strong-
coupling limit of circuit QED. That is, we show that
even though the transmon energy levels are insensitive
to low frequency voltages, transitions between levels can
strongly be driven by resonant radiation. We discuss in
detail the modifications of the dispersive limit and the
Purcell effect due to the increased EJ/EC ratio. The
subsequent Sections IV and V are devoted to the investi-

FIG. 1: (Color online) (a) Effective circuit diagram of the
transmon qubit. The two Josephson junctions (with capaci-
tance and Josephson energy CJ and EJ) are shunted by an
additional large capacitance CB , matched by a comparably
large gate capacitance Cg. (b) Simplified schematic of the
transmon device design (not to scale), which consists of a tra-
ditional split Cooper-pair box, shunted by a short (L ∼ λ/20)
section of twin-lead transmission line, formed by extending
the superconducting islands of the qubit. This short section
of line can be well approximated as a lumped-element capac-
itor, leading to the increase in the capacitances Cg1, Cg2 and
C′

B and hence in the effective capacitances CB and Cg in the
circuit.

gation of noise in the transmon system and its projected
effect on relaxation (T1) and dephasing (T2) times. We
conclude our paper with a summary and a comprehensive
comparison of the transmon with existing superconduct-
ing qubits in Section VI.

II. FROM THE COOPER PAIR BOX TO THE
TRANSMON

A. Model

In close resemblance to the ordinary CPB (see e.g.
Ref. [6]), the transmon consists of two superconduct-
ing islands coupled through two Josephson junctions,
but isolated from the rest of the circuitry. This dc-
SQUID setup allows for the tuning of the Josephson en-
ergy EJ = EJ,max |cos(πΦ/Φ0)| by means of an external
magnetic flux Φ. For simplicity, we initially assume that
both junctions are identical. (The discussion of the gen-
eral case including junction asymmetry is postponed un-
til Section II E.) Schematics of the device design and the
effective quantum circuit for the transmon are depicted
in Fig. 1.

As usual, the effective offset charge ng of the device,
measured in units of the Cooper pair charge 2e, is con-
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âσ̂+ + â†σ̂−
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of CPBs to other noise sources such as critical current
and flux noise is maintained (and further improved) in
the transmon system, rendering it a very promising can-
didate for the next generation of qubits (see Table I). A
complementary proposal for using a capacitor to modify
the EJ/EC ratio in superconducting flux qubits is put
forward in Ref. [18].
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circuit. The solution of the corresponding Schrödinger
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quantitative discussion of the charge dispersion and the
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flux degree of freedom in the split transmon, and the
role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics (circuit-QED) physics
[19] of the transmon is investigated in Section III, where
we show that despite the smallness of the charge dis-
persion, the transmon is expected to reach the strong-
coupling limit of circuit QED. That is, we show that
even though the transmon energy levels are insensitive
to low frequency voltages, transitions between levels can
strongly be driven by resonant radiation. We discuss in
detail the modifications of the dispersive limit and the
Purcell effect due to the increased EJ/EC ratio. The
subsequent Sections IV and V are devoted to the investi-
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2
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Figure 2.4: A phase diagram for cavity QED. The parameter space is described by the atom-photon
coupling strength, g, and the detuning, ∆, between the atom and cavity frequencies, normalized
to the rates of decay represented by Γ = max [γ, κ, 1/T ]. Different cavity QED systems, including
Rydberg atoms, alkali atoms, quantum dots, and circuit QED, are represented by dashed horizontal
lines. In the blue region the qubit and cavity are resonant, and undergo vacuum Rabi oscillations.
In the red, weak dispersive, region the ac Stark shift g2/∆ < Γ is too small to dispersively resolve
individual photons, but a QND measurement of the qubit can still be realized by using many photons.
In the white region, quantum non-demolition measurements are in principle possible with demolition
less than 1%, allowing 100 repeated measurements. In the green region single photon resolution is
possible but measurements of either the qubit or cavity occupation cause larger demolition. In the
yellow region the cavity becomes anharmonic, allowing it to create squeezed states and inherit some
inhomogeneous broadening, and the Stark shift becomes non-linear.

[from Schuster. Phd Thesis. Yale (2007)]

dispersive:
g � ∆

strong coupling:
g � Γ

3D optical 1D circuit
ωr/2π 350 THz 10 GHz
g/2π, g/ωr 220 MHz, 10−7 100 MHz, 10−2

1/κ, Q = ωr

κ 10 ns, 106 1 µs, 104

1/γ 50 ns 10 µs

Michael Goerz • Intro to cQED 15 / 20



dispersive frameCHAPTER 2. CAVITY QUANTUM ELECTRODYNAMICS 36

|0〉
|g〉 |e〉 |g〉 |e〉

|1〉

|2〉

|n〉

|3〉

|0〉

|1〉

|2〉

|n+1〉

|n〉

|0〉

|1〉

|2〉

|n-1〉

|0〉

|1〉

|2〉

|n〉

2g

2g  2

2g  n

ω
r ω

r

ω
a
-ω

r
=∆ > gω

a 
= ω

r

(ω
r
-g2/∆)

(ω
r
+g2/∆)

(ω
a
+g2/∆)

(ω
a
+3g2/∆)

(ω
a
+(2n+1)g2/∆)

ω
a

ω
a

Figure 2.2: Energy level diagrams of the Jaynes-Cummings Hamiltonian1. The dashed lines are
the eigenstates of the uncoupled Hamiltonian, where left is qubit in the |g⟩ state and right in the |e⟩
state, and |n⟩ corresponding to the photon number. The solid lines are the energies in the presence
of the dipole coupling. a. When the uncoupled qubit and resonator are resonant (ωa − ωr ≪ g)
the levels split forming new eigenstates that have both photon and qubit character. These levels
are split proportional to the dipole coupling strength, and to the square root of the number of
excitations, 2g

√
n, making the system very anharmonic. b. The energy levels in the dispersive limit

(ωa −ωr ≫ g) of the Jaynes-Cummings Hamiltonian. The effective cavity frequency is the difference
between successive number states, ω′

r ≈ ωr ± g2/∆ depending on the atom state. The effective atom
frequency is ω′

a ≈ ωa ± (2n + 1)g2/∆, where n is the number of photons in the cavity.

Another way to see the significance of the strong coupling limit is to look at the energy levels

of the joint system. When the cavity and atom frequencies are degenerate, photon number states,

|n⟩, and atom ground and excited states denoted by |g⟩ and |e⟩, are no longer eigenstates of the

full Hamiltonian (Eq. 2.1). The eigenstates must also diagonalize the interaction term, which (for

exact resonance) is accomplished by superpositions of atom states and cavity states of the form,

|ψ±⟩ = (|g⟩ |n⟩ ± |e⟩ |n − 1⟩) /
√

2. The energies of these new states are split by 2g
√

n (see Fig. 2.2a).

The finite lifetime due to decay or dephasing manifests itself by giving the energy levels a finite

width. When the width of the levels becomes so great that the splitting is obscured, it means

that the atom/photon decays before a single oscillation is complete. When in the strong coupling

limit (i.e. the levels are resolved), the atom-cavity system becomes anharmonic even for a single

photon, allowing creation of photon number states, squeezed states, and other quantum optics

phenomena [Birnbaum2005].

One should not get the idea that once in the strong coupling limit decoherence is unimportant.

On the contrary, strong coupling cavity QED can be used to study decoherence. Decoherence

is often the bane of experimental attempts to observe naked quantum effects, but it is also the

source of irreversibility and entropy in an otherwise unitary world. Decoherence literally moves the

[from Schuster. Phd Thesis. Yale (2007)]
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†

= (ωr − χσ̂z)â†â +
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Figure 3.5: Transmission of asymmetric cavity near one of its resonances (ωn), using an exact
analytic calculation (solid red) and a lorentzian model (dashed blue). The lorentzian is a very good
approximation to the full transmission spectrum near resonance. The input and output capacitor
act as extra stray capacitance to ground shifting the center frequency of the resonance, ωn, down by
δωn from the unloaded half-wave resonance nωλ/2. The width of the resonance is proportional to the
square of the capacitances. If the input and output couplings are the same and the line is lossless
transmission will be unity. This plot was generated using qout/qin = 5 and Q = 2/πq2

out+2/πq2
in = 20.

Both the magnitude, |S21|, and phase φ of the transmitted amplitude, can be exquisitely sensitive

probes of the cavity frequency (see Fig. 3.5) with a relative frequency shift of 1/Q giving a change

in transmitted amplitude/phase of order unity. As will be discussed in detail in sections 3.3 and 3.4,

the effective cavity resonance frequency is shifted differently depending on the state of the qubit.

The resulting change in the transmitted amplitude or phase of a tone passing through the cavity is

then used as a readout of the qubit state.

Exercise 3.1.1. a. Derive an exact expression for the transmission coefficient S21 in Eq. 3.17 using

the ABCD representation for the coupling capacitors and transmission line (see Pozar [Pozar1990]).

b. Use a similar technique but this time approximately expand about a frequency such that βℓ ∼ nπ.

c. Make the approximate substitution ωCin/outZ0 → qin/out. In reality the capacitors are frequency

dependent. By approximating qin/out as constant this dependence is neglected in the small range

near resonance. To connect to the quantum optics language in the following sections one can then

substitute qin/out →
√
κin/out/ωn.

3.1.5 Coplanar Waveguide Cavities

Thus far the description of transmission line resonators and their properties has been geometry

independent. In any physical realization a transmission line geometry must be chosen. A myriad

of options exist, including balanced lines such as the coplanar stripline (CPS), or unbalanced lines

[from Schuster. Phd Thesis. Yale (2007)]

Impedance mismatch at capacitor acts as mirror

Input/Output behavior given by scattering matrix
(transmission + reflection)
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summary & outlook

SC circuit toolbox:
capacitances, inductors, Josephson elements

circuits yield Ĥ in canonical variables charge, flux

transmon qubit: Duffing oscillator, robust to noise

cavity: coplanar waveguide oscillator

transmission lines: distributed element description

Outlook: theory of microwave engineering may provide
network description

Thank you!
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circuits yield Ĥ in canonical variables charge, flux

transmon qubit: Duffing oscillator, robust to noise

cavity: coplanar waveguide oscillator

transmission lines: distributed element description

Outlook: theory of microwave engineering may provide
network description

Thank you!

Michael Goerz • Intro to cQED 20 / 20



summary & outlook

SC circuit toolbox:
capacitances, inductors, Josephson elements
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circuits yield Ĥ in canonical variables charge, flux

transmon qubit: Duffing oscillator, robust to noise

cavity: coplanar waveguide oscillator

transmission lines: distributed element description

Outlook: theory of microwave engineering may provide
network description

Thank you!

Michael Goerz • Intro to cQED 20 / 20


	Outline
	superconducting circuits and qubits
	Coplanar Waveguide Resonators
	Combined system
	towards a network description
	Conclusion

