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Part I

OCT for a unitary operation
under dissipative evolution

D. Reich, G. Gualdi, C.P. Koch. PRA 88, 042309 (2013)
M. Goerz, D. Reich, C.P. Koch. arxiv:1312.0111
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Standard approach to quantum gate optimization

CPHASE = diag(−1, 1, 1, 1)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Goal: Maximize

F =
1

d

d∑

i=1

Re
〈

Ψi

∣∣∣Ô†P̂Û(T , 0, ε)P̂
∣∣∣Ψi

〉

Two-qubit gates: d = 4

OCT

iteration εold

∆ε

εnew

|00〉 Ô |00〉

|01〉 Ô |01〉

|10〉 Ô |10〉

|11〉 Ô |11〉

εnew εold

t0 T

∆ε(t) ∝
〈
χ(t)

∣∣∣ ∂εĤ
∣∣∣Ψ(t)

〉

t
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|11〉 Ô |11〉

εnew εold

t0 T

∆ε(t) ∝
〈
χ(t)

∣∣∣ ∂εĤ
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|10〉 Ô |10〉

|11〉 Ô |11〉
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OCT for open quantum systems

In the real world: decoherence
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ρ̂(T ) = D(ρ̂(0)); e.g.
∂ρ̂

∂t
=

i

~
[Ĥ, ρ̂] + LD(ρ̂)
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ρ̂(T ) = D(ρ̂(0)); e.g.
∂ρ̂

∂t
=

i

~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
d

∑d
i=1 Re

〈
Ψi

∣∣∣ Ô†P̂Û(T , 0, ε)P̂
∣∣∣Ψi

〉
to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
. . .

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

⇒ F =
1

d2
Re

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]
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ρ̂(T ) = D(ρ̂(0)); e.g.
∂ρ̂

∂t
=

i

~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
d

∑d
i=1 Re

〈
Ψi

∣∣∣ Ô†P̂Û(T , 0, ε)P̂
∣∣∣Ψi

〉
to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
. . .

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

⇒ F =
1

d2
Re

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]

ρ̂1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ̂2 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ̂3 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , . . .

d2 matrices to propagate! (16 for two-qubit gate)
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∂ρ̂

∂t
=
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~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
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Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
. . .

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

⇒ F =
1

d2
Re

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]

Claim

We only need to propagate three matrices (independent of d),
instead of d2.



A reduced set of density matrices
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No need to characterize the full dynamical map!

ρ̂1 =
1

20




8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2


 , ρ̂2 =

1

4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , ρ̂3 =

1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



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No need to characterize the full dynamical map!
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For Û = 1

using just ρ̂1 will not distinguish Û from Ô. (Ûρ̂1Û
†

= Ôρ̂1Ô
†
)
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ρ̂1, ρ̂2, ρ̂3 together guarantee that D(ρ̂) is unitary on the logical subspace.



A reduced set of density matrices

ρ̂1 = 1
20




8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2




gate is diagonal in the same basis as Ô

ρ̂2 = 1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




Totally rotated state: relative phases between mapped logical
eigenstates

ρ̂3 = 1
4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




dynamical map in the logical subspace
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Example 1: Optimization of a
Rydberg Gate
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Two trapped neutral atoms

Single-qubit Hamiltonian
5

|0i
|1i

|ii

|ri

�1

�2

⌦R
2

s1(t)⌧

⌦B
2

s2(t)

FIG. 1: Atomic levels for two-photon near-resonant excitation to a Rydberg state.

single-photon detuning �1 600 MHz
two-photon detuning �2 0
excitation energy E1 6.8 GHz
Rabi frequencies ⌦R, ⌦B 300 MHz
interaction energy U 50 MHz
lifetime ⌧ = 1/� 25 ns

TABLE I: Parameters of the Hamiltonian, Eq. (13), for implementing a controlled phasegate with two rubidium atoms.

to the Rydberg state proceeds by a near-resonant two-photon process. The corresponding single atom Hamiltonian
in the basis {|0i , |1i , |ii , |ri}, cf. Fig. 1, and employing a two-color rotating wave approximation is given by

Ĥ1 =

0
BB@

0 0 1
2⌦R(t) 0

0 E1 0 0
1
2⌦R(t) 0 �1

1
2⌦B(t)

0 0 1
2⌦B(t) �2

1
CCA . (13a)

The total Hamiltonian for two atoms includes an interaction when both atoms are in the Rydberg state,

Ĥ = Ĥ1 ⌦ 11 + 11 ⌦ Ĥ1 � U |rrihrr| . (13b)

Spontaneous emission from the intermediate level is accounted for by the dissipator

LD(⇢̂) = �

✓
Â⇢̂Â

† � 1

2

n
Â

†
Â, ⇢̂

o◆
with Â = |0i hi| , (14)

and � the decay rate, � = 1/⌧ . The parameters correspond to optically trapped rubidium atoms and are summarized
in Table I. Since qubit level |1i remains decoupled throughout the time evolution, cf. Eq. (13a) and Fig. 1, the
Hamiltonian (13) admits only diagonal gates. The update equations for real and imaginary part of the red and blue
pulses are obtained by evaluating Eq. (9c) for the Hamiltonian given in Eq. (13),

Re {�⌦R,B(t)} =
S(t)

�a

nX

i=1

Im
n

Tr
⇣
�i�̂old

i (t)
h
Re
n
⌦̂R,B(t)

o
, ⇢̂new

i (t)
i⌘o

(15a)

Im {�⌦R,B(t)} =
S(t)

�a

nX

i=1

Im
n

Tr
⇣
�̂old

i (t)
h
Im
n
⌦̂R,B(t)

o
, ⇢̂new

i (t)
i⌘o

, (15b)

where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
⇢2 (phase errors) and ⇢3 (norm conservation) of Eqs. (4b, 4c). The relative weights w2 and w3 in Eq. (1) can be
modified to emphasize one of the two aspects. Figure 2 therefore also compares two states with equal and unequal
weights in Eq. (1), cf. green dotted and orange solid lines. The fastest convergence was obtained for w2/w3 = 10.
The panels from top to bottom show the optimization without any dissipation, starting from a well-chosen guess
pulse; an optimization starting with a bad guess pulse of insu�cient fluence; and an optimization taking into account

Ĥ1q =




0 0 ΩR

2 s1(t) 0
0 E1 0 0

ΩR

2 s1(t) 0 ∆1
ΩB

2 s2(t)

0 ΩB

2 s2(t) ∆2




Two-qubit Hamiltonian

Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q−U |rr〉〈rr |
dipole-dipole interaction when both atoms in Rydberg state

no coupling between |0〉, |1〉 ⇒ only diagonal gates

Û = diag(e iφ00 , e iφ01 , e iφ10 , e iφ11 )

Michael Goerz • Uni Kassel 10 / 36
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Hamiltonian (13) admits only diagonal gates. The update equations for real and imaginary part of the red and blue
pulses are obtained by evaluating Eq. (9c) for the Hamiltonian given in Eq. (13),
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where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
⇢2 (phase errors) and ⇢3 (norm conservation) of Eqs. (4b, 4c). The relative weights w2 and w3 in Eq. (1) can be
modified to emphasize one of the two aspects. Figure 2 therefore also compares two states with equal and unequal
weights in Eq. (1), cf. green dotted and orange solid lines. The fastest convergence was obtained for w2/w3 = 10.
The panels from top to bottom show the optimization without any dissipation, starting from a well-chosen guess
pulse; an optimization starting with a bad guess pulse of insu�cient fluence; and an optimization taking into account
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where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
⇢2 (phase errors) and ⇢3 (norm conservation) of Eqs. (4b, 4c). The relative weights w2 and w3 in Eq. (1) can be
modified to emphasize one of the two aspects. Figure 2 therefore also compares two states with equal and unequal
weights in Eq. (1), cf. green dotted and orange solid lines. The fastest convergence was obtained for w2/w3 = 10.
The panels from top to bottom show the optimization without any dissipation, starting from a well-chosen guess
pulse; an optimization starting with a bad guess pulse of insu�cient fluence; and an optimization taking into account
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FIG. 1: Atomic levels for two-photon near-resonant excitation to a Rydberg state.

single-photon detuning �1 600 MHz
two-photon detuning �2 0
excitation energy E1 6.8 GHz
Rabi frequencies ⌦R, ⌦B 300 MHz
interaction energy U 50 MHz
lifetime ⌧ = 1/� 25 ns

TABLE I: Parameters of the Hamiltonian, Eq. (13), for implementing a controlled phasegate with two rubidium atoms.

to the Rydberg state proceeds by a near-resonant two-photon process. The corresponding single atom Hamiltonian
in the basis {|0i , |1i , |ii , |ri}, cf. Fig. 1, and employing a two-color rotating wave approximation is given by
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The total Hamiltonian for two atoms includes an interaction when both atoms are in the Rydberg state,

Ĥ = Ĥ1 ⌦ 11 + 11 ⌦ Ĥ1 � U |rrihrr| . (13b)
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and � the decay rate, � = 1/⌧ . The parameters correspond to optically trapped rubidium atoms and are summarized
in Table I. Since qubit level |1i remains decoupled throughout the time evolution, cf. Eq. (13a) and Fig. 1, the
Hamiltonian (13) admits only diagonal gates. The update equations for real and imaginary part of the red and blue
pulses are obtained by evaluating Eq. (9c) for the Hamiltonian given in Eq. (13),
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where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
⇢2 (phase errors) and ⇢3 (norm conservation) of Eqs. (4b, 4c). The relative weights w2 and w3 in Eq. (1) can be
modified to emphasize one of the two aspects. Figure 2 therefore also compares two states with equal and unequal
weights in Eq. (1), cf. green dotted and orange solid lines. The fastest convergence was obtained for w2/w3 = 10.
The panels from top to bottom show the optimization without any dissipation, starting from a well-chosen guess
pulse; an optimization starting with a bad guess pulse of insu�cient fluence; and an optimization taking into account
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two-photon detuning �2 0
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Rabi frequencies ⌦R, ⌦B 300 MHz
interaction energy U 50 MHz
lifetime ⌧ = 1/� 25 ns

TABLE I: Parameters of the Hamiltonian, Eq. (13), for implementing a controlled phasegate with two rubidium atoms.

to the Rydberg state proceeds by a near-resonant two-photon process. The corresponding single atom Hamiltonian
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Ĥ1 =

0
BB@

0 0 1
2⌦R(t) 0

0 E1 0 0
1
2⌦R(t) 0 �1

1
2⌦B(t)

0 0 1
2⌦B(t) �2

1
CCA . (13a)

The total Hamiltonian for two atoms includes an interaction when both atoms are in the Rydberg state,

Ĥ = Ĥ1 ⌦ 11 + 11 ⌦ Ĥ1 � U |rrihrr| . (13b)
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and � the decay rate, � = 1/⌧ . The parameters correspond to optically trapped rubidium atoms and are summarized
in Table I. Since qubit level |1i remains decoupled throughout the time evolution, cf. Eq. (13a) and Fig. 1, the
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pulses are obtained by evaluating Eq. (9c) for the Hamiltonian given in Eq. (13),
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where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
⇢2 (phase errors) and ⇢3 (norm conservation) of Eqs. (4b, 4c). The relative weights w2 and w3 in Eq. (1) can be
modified to emphasize one of the two aspects. Figure 2 therefore also compares two states with equal and unequal
weights in Eq. (1), cf. green dotted and orange solid lines. The fastest convergence was obtained for w2/w3 = 10.
The panels from top to bottom show the optimization without any dissipation, starting from a well-chosen guess
pulse; an optimization starting with a bad guess pulse of insu�cient fluence; and an optimization taking into account
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Ĥ = Ĥ1 ⌦ 11 + 11 ⌦ Ĥ1 � U |rrihrr| . (13b)

Spontaneous emission from the intermediate level is accounted for by the dissipator

LD(⇢̂) = �

✓
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with Â = |0i hi| , (14)

and � the decay rate, � = 1/⌧ . The parameters correspond to optically trapped rubidium atoms and are summarized
in Table I. Since qubit level |1i remains decoupled throughout the time evolution, cf. Eq. (13a) and Fig. 1, the
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where ⌦̂R,B represents the coupling to the red and blue laser, respectively, in Eq. (13).
Figure 2 shows the gate error of the controlled phasegate versus iteration of the optimization algorithm when using

a full basis, i.e., 16 states, or using three, respectively two, states in Eq. (15). The minimum number of states in this
example is two since the Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within
the logical subspace have to be checked. Therefore, ⇢1 in Eq. (4a) can be omitted, and the two remaining states are
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Example 2: Optimization of a
Transmon Gate
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Two Coupled Transmon Qubits

qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. !17".
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. !5–7" for recent reviews. The device presented in Ref.
!17" operated at an energy ratio of EJ /EC#2!104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained $and further im-
proved% in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
!18".

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics $circuit-QED% physics !19"
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation $T1% and dephasing $T2% times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB $see, e.g., Ref.
!6"%, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max &cos$"# /#0%& by
means of an external magnetic flux #. For simplicity, we
initially assume that both junctions are identical. $The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.% Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system !20",

Ĥ = 4EC$n̂ − ng%2 − EJ cos $̂ . $2.1%

It describes the effective circuit of Fig. 1$a% in the absence of
coupling to the transmission line $i.e., disregarding the reso-
nator mode modeled by Lr and Cr%, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and $̂ denote the num-

FIG. 1. $Color online% $a% Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions $with capacitance and Jo-
sephson energy CJ and EJ% are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
$b% Simplified schematic of the transmon device design $not to
scale%, which consists of a traditional split Cooper pair box, shunted
by a short $L#% /20% section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB!
and hence in the effective capacitances CB and Cg in the circuit.
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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Full Hamiltonian

Ĥ = ωc â†â︸ ︷︷ ︸
1©

+ω1b̂
†
1b̂1 + ω2b̂

†
2b̂2︸ ︷︷ ︸

2©
− 1

2
(α1b̂

†
1b̂
†
1b̂1b̂1 + α2b̂

†
2b̂
†
2b̂2b̂2)

︸ ︷︷ ︸
3©

+

+ g1(b̂
†
1â + b̂1â†) + g2(b̂

†
2â + b̂2â†)︸ ︷︷ ︸

4©
+ ε∗(t)â + ε(t)â†︸ ︷︷ ︸

5©
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Two Coupled Transmon Qubits

qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. !17".
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. !5–7" for recent reviews. The device presented in Ref.
!17" operated at an energy ratio of EJ /EC#2!104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained $and further im-
proved% in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
!18".

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics $circuit-QED% physics !19"
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation $T1% and dephasing $T2% times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB $see, e.g., Ref.
!6"%, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max &cos$"# /#0%& by
means of an external magnetic flux #. For simplicity, we
initially assume that both junctions are identical. $The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.% Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system !20",

Ĥ = 4EC$n̂ − ng%2 − EJ cos $̂ . $2.1%

It describes the effective circuit of Fig. 1$a% in the absence of
coupling to the transmission line $i.e., disregarding the reso-
nator mode modeled by Lr and Cr%, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and $̂ denote the num-

FIG. 1. $Color online% $a% Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions $with capacitance and Jo-
sephson energy CJ and EJ% are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
$b% Simplified schematic of the transmon device design $not to
scale%, which consists of a traditional split Cooper pair box, shunted
by a short $L#% /20% section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB!
and hence in the effective capacitances CB and Cg in the circuit.

KOCH et al. PHYSICAL REVIEW A 76, 042319 $2007%

042319-2

J. Koch et al. PRA 76, 042319 (2007)

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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Effective Hamiltonian
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Ĥeff =
∑

q=1,2

Nq−1∑

i=0

(ω
(q)
i + χ

(q)
i )Π̂

(q)

i +
∑

q=1,2

Nq−1∑

i=0

g
eff (q)
i ε(t)(Ĉ
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IBM Qubit – Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω1 4.3796 GHz
qubit frequency ω2 4.6137 GHz
drive frequency ωd 4.4985 GHz
anharmonicity α1 -239.3 MHz
anharmonicity α2 -242.8 MHz
effective qubit-qubit coupling J -2.3 MHz
qubit 1,2 decay time T1 38.0 µs, 32.0 µs
qubit 1,2 dephasing time T∗2 29.5 µs, 16.0 µs

Near resonance of
α1 with ω1 − ω2

single frequency
drive centered
between two
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Ĥeff =
∑
ijq

(
(ω

(q)
i + χ

(q)
i )Π̂

(q)
i + g

eff (q)
i ε(t)(Ĉ
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†
Â
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OCT with a reduced set of states
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FIG. 9: Shape and spectrum of an optimized pulse, from optimization with 3 weighted states, with strong dissipation. The
panels from top to bottom show the amplitude, complex phase, and spectrum of the optimized pulse ⌦(t). The spectrum is
shown in the rotating frame, with zero corresponding to the driving frequency wd of the field. The transition frequencies from
the logical subspace are indicated by vertical dashed lines. These are �1 = w1�wd = �118.88 MHz and �1��1 = �358.18 MHz
in red for the left qubit, and �2 = w2 �wd = 115.20 MHz and �2 � �2 = �127.58 MHz in blue for the right qubit. The central
peak in the spectrum has been cut o↵ to show the relevant side-peaks, and would extend to a value of approximately 10.0. For
all quantities, the values for the guess pulse are shown as a dotted line.

during optimization is two for Hamiltonians that admit only diagonal gates and three for Hamiltonians that allow for
both diagonal and non-diagonal gates. Remarkably, the size of the minimal set of states is independent of Hilbert
space dimension.

While the minimal number of states allows for determining whether a quantum gate has been implemented, it is
insu�cient to deduce bounds on the gate error [29]. Numerical and analytical bounds require d + 1, respectively 2d,
states in the reduced set, where d is the dimension of the Hilbert space on which the optimization target is defined.
Employing the sets of d + 1, respectively 2d, states in quantum gate optimization is still significantly more e�cient,
both with respect to CPU time and memory requirements, than utilizing a full basis of Liouville space, with d2

elements [9, 12, 23].
We have demonstrated the power of our approach in the optimization of a diagonal and a non-diagonal two-qubit

gate. Specifically, we have optimized a controlled phasegate for trapped neutral atoms that are excited into a Rydberg
state and subject to fast spontaneous emission from an intermediate state. The best performance was achieved by
two states in the reduced set and a large weight of the Hilbert-Schmidt product for the state responsible for detecting
phase errors. In the optimization of a

p
iSWAP gate for two transmons coupled to the same transmission line cavity

and subject to both energy relaxation and pure dephasing, we have found the best, and roughly identical, performance
for the reduced sets consisting of d + 1, respectively 2d, states. In all cases, the final gate error was limited by the
decoherence rates. This confirms that employing a reduced set of states in quantum gate optimization is su�cient to
determine the physical limit for the gate error.

The significant reduction in computational resources that we report here opens the door for a large-scale, systematic
investigation of the fundamental limits of high-fidelity quantum gates in the presence of decoherence. Our approach
is not tied to a specific decoherence model. It therefore allows to explore, using optimal control theory, settings for
extended Hilbert spaces and beyond Markovian master equations, where a quantum system’s complexity may possibly
be exploited for control.
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FIG. 10: Population dynamics for ⇢̂(t = 0) = |01ih01| (a) and ⇢̂(t = 0) = |11ih11| (b) under the pulse shown in Fig. 9. For
each of the two propagated states, the expectation value of the right qubit excitation quantum number j is shown in the top
panel, with the standard deviation in gray, the expectation value for the corresponding quantum number i for the left qubit
is shown in the center panel, and the population dynamics for all the logical subspace states is shown in the bottom panel
(colored lines), along with the total population in the logical subspace (black line).

APPENDIX A: THREE STATES ARE SUFFICIENT TO ASSESS WHETHER A DESIRED TARGET
UNITARY IS IMPLEMENTED

In the following we discuss the functional Jdist,

Jdist =

3X

i=1

Tr

⇣
Ô⇢̂i(0)Ô

† � ⇢̂i (T )
⌘2
�

, (A1)

which is built on the distance between the ideal and actual states at time T . It attains its global minimum, Jdist = 0,
if and only if the initial states defined in Section II, ⇢̂i(0) for i = 1, 2, 3, are mapped to their correct target states, i.e.,
fulfill condition (3). This functional motivates the use of the optimization functional JT , Eq. (1), which is also built
on only three states, as discussed in Sec. A 1. JT and Jdist di↵er in that JT evaluates the Hilbert-Schmidt products,
i.e., the projections of the actual onto the ideal states instead of the trace distance. The construction of Jdist, and
subsequently JT , is rationalized by a theorem for unital, i.e., identity preserving, dynamical maps. Specifically, the
theorem states that a complete and totally rotating set of density matrices is su�cient to determine whether a given
time evolution is unitary. The functional (A1) exploits the further property of a complete and totally rotating set of
density matrices to di↵erentiate any two unitaries [29]. The theorem for unital dynamical maps is proven in Sec. A 2.

It should be stressed that we use JT , Eq. (1), instead of Jdist, Eq. (A1), as optimization functional. This is motivated
by the convexity of JT which implies a much more favorable convergence behavior than would be obtained with a

Ψ(t = 0) = |01〉
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† � ⇢̂i (T )
⌘2
�

, (A1)

which is built on the distance between the ideal and actual states at time T . It attains its global minimum, Jdist = 0,
if and only if the initial states defined in Section II, ⇢̂i(0) for i = 1, 2, 3, are mapped to their correct target states, i.e.,
fulfill condition (3). This functional motivates the use of the optimization functional JT , Eq. (1), which is also built
on only three states, as discussed in Sec. A 1. JT and Jdist di↵er in that JT evaluates the Hilbert-Schmidt products,
i.e., the projections of the actual onto the ideal states instead of the trace distance. The construction of Jdist, and
subsequently JT , is rationalized by a theorem for unital, i.e., identity preserving, dynamical maps. Specifically, the
theorem states that a complete and totally rotating set of density matrices is su�cient to determine whether a given
time evolution is unitary. The functional (A1) exploits the further property of a complete and totally rotating set of
density matrices to di↵erentiate any two unitaries [29]. The theorem for unital dynamical maps is proven in Sec. A 2.
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abstract

PACS numbers: xx.xx.xx

I. INTRODUCTION

quantum information with Rydberg atoms [1]
Rydberg gate [2]: resonant excitation & Rydberg

blockade
demonstration of Rydberg blockade [3, 4], demonstra-

tion of entanglement via Rydberg blockade [5, 6], use of
STIRAP [7] in conjunction with the Rydberg blockade [8]

experiments with single site addressability now in
progress

experiments prone to fluctuations, here we investigate
theoretically robustness with respect to

II. MODEL

We consider two cesium atoms trapped in an opti-
cal lattice with single-site addressability. The qubit
states are encoded in hyperfine levels of the ground state,
|0i = |6 2S1/2, F = 3i, |1i = |6 2S1/2, F = 4i. For practi-
cal reasons, the Rydberg level, |ri = |50D3/2i, is accessed
by a two-photon transition via an intermediate state,
|ii = |7P?/2i. In the basis {|0i, |1i, |ii, |ri}, the Hamilto-
nian for a single atom, using a two-photon rotating-wave
approximation [9], reads

Ĥ1q =

0
B@

0 0 ⌦B(t) 0
0 E1 0 0

⌦B(t) 0 �1 ⌦R(t)
0 0 ⌦R(t) �2

1
CA , (1)

|0i
|1i

|ii

|ri�2

�1

⌦B

⌦R

FIG. 1: (Color online) Level scheme for a single atom.

⇤These authors contributed equally.

where ⌦B/R(t) are the Rabi frequencies of the ‘blue’ and
‘red’ pulses, cf. Fig. 1, and �1/2 are the one-photon and
two-photon detunings. The two atoms are kept at a dis-
tance of about xx µm such that their interaction is negli-
gible except if both atoms are in the Rydberg state. The
Hamiltonian for the two atoms, including their Rydberg-
Rydberg interaction is written as

Ĥ2q = Ĥ1q ⌦ 11 + 11 ⌦ Ĥ1q � u|rrihrr| , (2)

with interaction energy u which amounts to 57.26MHz
for the given Rydberg level and interatomic separation.

Resonant excitation of both atoms to the Rydberg
state leads to an acceleration of the atoms due to the
dependence of the Rydberg-Rydberg interaction on in-
teratomic separation [2]. The minimum gate duration
is then determined either by the inverse of the interac-
tion, u, or by the trapping period of the atoms in their
ground [10], with the latter implying the more severe
restriction in most cases. We therefore consider the Ry-
dberg blockade regime which avoids resonant excitation
into |rri. It corresponds to

u � ⌦j (j = B, R) (3)

and requires the atoms to be individually addressable [2].
The original proposal of the Rydberg gate [2] employs
a sequence of three pulses: a ⇡-pulse on the left atom,
resulting in complete population transfer from |0i to |ri,
followed by a 2⇡-pulse on the right atom and another
⇡-pulse on the left atom. If the qubits are initially in
|00i, a non-local phase is accumulated during the middle
pulse because of the detuning of level |rri due to the
interaction, u. The gate duration is limited by the inverse
of the Rabi frequencies.

III. ANALYTIC PULSE SEQUENCES

When a resonant two-photon transition via the inter-
mediate level is employed, the two-level system {|0i, |ri}
for one atom in the original proposal [2] is replaced by
{|0i, |ii, |ri}. There are then two di↵erent possibilities
to achieve population transfer in the two three-level sys-
tems: The two pulses, ⌦B connecting |0i and |ii and
⌦R connecting |ii and |ri are either sent simultaneously,
overlapping completely, or time-delayed but with some
overlap and in a counter-intuitive sequence, i.e., using

|rAi

|iAi

OO

|0Ai

OO

⌦ |rBi

|iBi

OO

|0Bi

OO

= |rArBi

|rAiBi

::

|iArBi

dd

|rA0Bi

::

|iAiBi

dd ::

|0ArBi

dd

|iA0Bi

dd ::

|0AiBi

dd ::

|0A0Bi

dd ::

Figure 1.2: Graph representation of all transitions in the two-qubit Hamiltonian, The transitions are
colored according to which of them can be driven independently. The subscript A and B denote the left
and right qubit, respectively.

If we also want to include dephasing of the |ri level, the appropriate dissipation operators are

Â3 = (|iihr| + |rihi|) ⌦ (1.15)

Â4 = ⌦ (|iihr| + |rihi|) ; (1.16)

the corresponding dissipation rate can be measured experimentally.

1.5 Summary of Parameters

• Time Grid

– T > 50 ns

– nt = 1000 is a su�ciently dense sampling to describe the pulse evolution using Chebychev
propagation in RWA (the pulse envelope is assumed piecewise-constant within one timestep)

• Single Qubit Levels, Detunings, Interaction Energy

– Energy of |0i ground state: E0 = 0

– Energy of |ii intermediary state: Ei = 0.3035 cm-1

– Energy of |1i excited state: E1 = 0.3035 cm-1

– Single-Photon Detuning �1 = 0.0424 cm-1

– Two-Photon Detuning �2 = 0

– Interaction energy in |rri: U = 0.00191 cm-1

• Two-Qubit Levels (RWA-shifted, with �2 = 0)

– E00 = 0

– E01 = E1

– E0i = �1

– E0r = �2 = 0

– E10 = E1

– E11 = E1 + E1 = 2E1

– E1i = E1 + �1

– E1r = E1 + �2 = E1

7

blockade regime (|rr〉 blocked)

single-site addressability (4 pulses)

Analytical pulse scheme: Jaksch et al. PRL 85, 2208 (2000)

π-flip (l) 2π-flip (r) π-flip (l)
|00〉 → i |r0〉 → i |r0〉 → − |00〉
|10〉 → |10〉 → − |10〉 → − |10〉
|01〉 → i |r1〉 → i |r1〉 → − |01〉
|11〉 → |11〉 → |11〉 → |11〉
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Ĥ2q = Ĥ1q ⌦ 11 + 11 ⌦ Ĥ1q � u|rrihrr| , (2)

with interaction energy u which amounts to 57.26MHz
for the given Rydberg level and interatomic separation.

Resonant excitation of both atoms to the Rydberg
state leads to an acceleration of the atoms due to the
dependence of the Rydberg-Rydberg interaction on in-
teratomic separation [2]. The minimum gate duration
is then determined either by the inverse of the interac-
tion, u, or by the trapping period of the atoms in their
ground [10], with the latter implying the more severe
restriction in most cases. We therefore consider the Ry-
dberg blockade regime which avoids resonant excitation
into |rri. It corresponds to

u � ⌦j (j = B, R) (3)

and requires the atoms to be individually addressable [2].
The original proposal of the Rydberg gate [2] employs
a sequence of three pulses: a ⇡-pulse on the left atom,
resulting in complete population transfer from |0i to |ri,
followed by a 2⇡-pulse on the right atom and another
⇡-pulse on the left atom. If the qubits are initially in
|00i, a non-local phase is accumulated during the middle
pulse because of the detuning of level |rri due to the
interaction, u. The gate duration is limited by the inverse
of the Rabi frequencies.

III. ANALYTIC PULSE SEQUENCES

When a resonant two-photon transition via the inter-
mediate level is employed, the two-level system {|0i, |ri}
for one atom in the original proposal [2] is replaced by
{|0i, |ii, |ri}. There are then two di↵erent possibilities
to achieve population transfer in the two three-level sys-
tems: The two pulses, ⌦B connecting |0i and |ii and
⌦R connecting |ii and |ri are either sent simultaneously,
overlapping completely, or time-delayed but with some
overlap and in a counter-intuitive sequence, i.e., using

|rAi

|iAi

OO

|0Ai

OO

⌦ |rBi

|iBi

OO

|0Bi

OO

= |rArBi

|rAiBi

::

|iArBi

dd

|rA0Bi

::

|iAiBi

dd ::

|0ArBi

dd

|iA0Bi

dd ::

|0AiBi

dd ::

|0A0Bi

dd ::

Figure 1.2: Graph representation of all transitions in the two-qubit Hamiltonian, The transitions are
colored according to which of them can be driven independently. The subscript A and B denote the left
and right qubit, respectively.

If we also want to include dephasing of the |ri level, the appropriate dissipation operators are
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3-Level Transfer
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FIG. 2: (Color online) Three sequential Blackman pulse pairs
implementing a C-PHASE gate via Rydberg blockade.

STIRAP. The sequence implementing the gate can be
composed of simultaneous pulse pairs, STIRAP pulses
or a combination of the two. We discuss all three possi-
bilities in the following.

A. Sequence of three simultaneous pulse pairs

We first consider three simultaneous pulse pairs and
take the pulses to be Blackman pulses, i.e., the envelope
is given by

S(t) =
E0

2
(1 � a cos (2⇡t/T ) + a cos (4⇡t/T )) (4)

with a = 0.16. A corresponding sequence with the pulse
amplitudes chosen to yield two ⇡-pulses on the left atom
and one 2⇡-pulse on the right atom is shown Fig. 2. The
2⇡-pulse on the right atom is comparatively long in order
to ensure fulfillment of the blockade condition, Eq. (3).
Note that the choice of identical peak Rabi frequencies for
the red and blue laser, ⌦B,max = ⌦R,max, is the only one
possible to guarantee complete population inversion in a
three-level system using simultaneous pulses [9]. The an-
alytical solution which yields complete population trans-
fer is based on adiabatic elimination of the intermediate
level and a ⇡-pulse in the ensuing e↵ective two-level sys-
tem [9].

The pulse sequence shown in Fig. 2 yields an average
gate fidelity of F = 0.999: Provided the peak amplitudes
of the pulses are adjusted to give pulse areas of exactly ⇡
and 2⇡, respectively, and the pulses are su�ciently long
such that the peak amplitudes do not violate the block-
ade condition, Eq. (3), F can be brought arbitrarily close
to one. This implies in particular that for peak ampli-
tudes of the order of 100 MHz, we do not yet see an e↵ect
of dynamical Stark shifts. The minimum gate duration is
determined by Eq. (3). This is illustrated by Fig. 3 which
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FIG. 3: (Color online) Quantum speed limit for the Ry-
dberg gate using simultaneous Blackman pulse pairs: For
short pulses, the amplitude of the 2⇡-pulse is large enough
to break the Rydberg blockade such that |rri gets populated
(dashed green line). Moreover, population of the intermediate
level (blue dot-dashed line) cannot be avoided despite a large
single-photon detuning due to the large bandwidth of a short
pulse.

shows the average gate fidelity together with the maxi-
mum populations in the intermediate level on either left
or right atom and in |rri as a function of duration of the
pulse acting on the right atom. The 2⇡-pulse cycles the
right atom to the Rydberg state and back without popu-
lating it due to the Rydberg-Rydberg interaction shifting
the level |rri out of resonance. However, condition (3) is
violated for durations of the 2⇡-pulse of less than 200 ns
due to the correspondingly large peak amplitudes, and
population in |rri is observed, cf. green dashed curve in
Fig. 3. For pulse durations of less than 20 ns, a further er-
ror is introduced by incomplete population cycling on all
transitions. It is reflected in population of the intermedi-
ate level on both left and right atom, cf. blue dot-dashed
curve in Fig. 3. This error is due to a breakdown of
the condition for adiabatic elimination of the intermedi-
ate level. The influence of losses and noise which might
compromise the gate fidelity will be discussed below in
Section III D.

B. Sequence of STIRAP pulse pairs

STIRAP is a very popular scheme to achieve popula-
tion transfer in three-level systems where the interme-
diate level has a short lifetime since it allows for elimi-
nating spontaneous emission loss from the intermediate
level [11]. It is based on adiabatically following a dynamic
dark state that does not contain an |ii-component. The
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FIG. 4: A sequence of STIRAP pulse pairs to implement the
Rydberg C-phase gate: While the pulses acting on the left
atom can be made arbitrarily short, the pulses acting on the
right atom need to be long enough not to break the Rydberg
blockade.

condition for adiabatic following is roughly given by [11]

⌦j � 10

�⌧
(j = B, R) (5)

where �⌧ is the time in which the pulses overlap. That is
for short pulses, large amplitudes are required. However,
for a Rydberg gate, the blockade condition, Eq. (3), also
needs to be fulfilled. Therefore STIRAP can only em-
ploy comparatively long pulses, at least for the pulse pair
acting on the right atom. A corresponding sequence of
STIRAP pulse pairs, using short pulses on the left atom
and long pulses on the right atom, is shown in Fig. 4.

In order to quantify violation of the blockade condition,
we define the ’blockade e�ciency’, B, to be

B = max(P1r) �
1

2
P1r(T ) �

✓
max(Prr) �

1

2
Prr(T )

◆
,

(6)
where T is the total time of the pulse sequence and P1r(rr)

the population in |1ri (|rri). B takes values between zero
and one, with one corresponding to a perfect blockade.
Both maximum and final-time populations appear in B
because, in order to have full Rabi cycling, the Rydberg
level must be fully populated (giving a maximum popu-
lation of one) and then fully depopulated (giving a final
population of zero), i.e., considering only the maximum
population does not allow for distinguishing between ⇡
and 2⇡ pulses. The blockade condition, Eq. (3), depends
on the peak amplitude of the pulses whereas the adia-
baticity condition, Eq. (5), depends on the pulses’ com-
plete Rabi angle. For short pulses the Rabi angle will not
be su�ciently large to satisfy the adiabaticity condition
without requiring a peak amplitude so high that it will
break the blockade. This is illustrated in Fig. 5 (top),
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FIG. 5: (Color online) Breakdown of the Rydberg-Rydberg
blockade for STIRAP: Only long gate durations allow for am-
plitudes that are su�ciently large to ensure adiabaticity in
STIRAP while being small enough not to break the Rydberg
blockade (lower panel). For short gate durations, the am-
plitudes that are required to ensure adiabaticity will always
break the Rydberg blockade (upper panel).

where for small amplitudes both the maximum and final
|1ri populations rise together: our Rabi angle is less than
⇡ (blue long-dashed and green dashed lines). Then, as
the final |1ri population begins to fall (red dotted and
orange dot-dashed lines) such that the adiabaticity con-
dition is better fulfilled, the blockade is broken, causing
the drop in the blockade e�ciency, cf. solid black line.
In Fig. 5 (bottom), the maximum and final |1ri popu-
lations rise together (blue long-dashed and green dashed
lines), but |1ri is now fully depopulated, thus achieving
full Rabi cycling, before breaking the blockade. This cor-
responds to the area where B ⇡ 1 seen in the graph.

Even in the regime where both the adiabaticity condi-
tion and the blockade condition are fulfilled, the fidelity
oscillates rapidly as a function of the peak amplitude, as
seen in Fig. 6. This is caused by populating the interme-
diate level |rii. Although this population has little e↵ect
on the overall population dynamics, due to the extremely
large Rabi angles required to perform STIRAP, it does af-
fect the phase. When the additional phase, accumulated
due to population of |rii, is not a multiple of 2⇡, the
fidelity is very low. These oscillations in the fidelity per-
sist also in the regime where the adiabaticity and block-
ade condition cannot be fulfilled simultaneously, but the
fidelity then never reaches one, even for the peaks of the
oscillations.

Mixed:

4

0
0.1
0.2
0.3
0.4
0.5
0.6

p
o
p

u
la

ti
o
n

blockade efficiency
fidelity

0 1 2 3 4
peak amplitude ( 100 MHz )

0

0.2

0.4

0.6

0.8

1

T = 1200 ns

T = 4200 ns

FIG. 6: (Color online) Gate fidelity for the Rydberg gate
using STIRAP pulse pairs: even for amplitudes for which the
blockade condition, Eq. (3), is fulfilled, the gate fidelity may
be low due to improper phase alignment.
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FIG. 7: (Color online) Fidelity vs overlap length for the mixed
scheme using STIRAP pulses on the left atom and simulta-
neous pulses on the right atom. The overlap length is the
amount of time that each STIRAP pulse pair acting on the
left atom overlaps with the central pulse pair acting on the
right atom.

C. Mixed scheme: STIRAP-⇡-pulses and
simultaneous 2⇡-pulses

The primary drawbacks of the simultaneous pulses are
the unwanted population in the intermediate level for
the pulses acting on the left atom and a relatively large
sensitivity of the pulses to experimental variations. On
the other hand, the primary drawback of STIRAP is the
breakdown of the Rydberg-Rydberg blockade, which re-
sults in employing an extremely long pulse acting on the
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FIG. 8: (Color online) Mixed scheme: STIRAP pulse pairs for
robust population transfer on the left atom, and simultaneous
pulses for the 2⇡ rotation of the right atom.

right atom. This issue, however, is not present when us-
ing STIRAP for the pulses acting on the left atom. We
therefore investigate a mixed scheme, consisting of STI-
RAP pulses to drive the ⇡ rotations on the left atom and
simultaneous pulses to drive the 2⇡ rotation on the right
atom, cf. Fig. 8. By doing so we use each method where
it is most e↵ective. Furthermore, the pulses on the left
and right atom can be overlapped without any apprecia-
ble loss in fidelity. This is because the pulses acting on
the right atom only drive significant population trans-
fer during the central third of the pulses. As long as
the left atom is populated by the time the amplitude
of the pulses acting on the right atom becomes signfi-
cant, the blockade is still e↵ective. This is illustrated in
Fig. 7, where the two STIRAP pulses acting on the left
atom, that bookend the central pulses acting on the right
atom, are moved in towards the center. As seen in Fig. 7,
the pulses can be compressed quite far: By overlapping
the STIRAP pulses with the central pulses for 250 ns, cf.
Fig. 8, the gate duration can be reduced from 1300 ns to
800 ns.

D. Robustness

For all three variants of pulse sequences, the gate fi-
delity in an actual experiment will be compromised by
noise and experimental inaccuracies. We consider in the
following three main sources of errors: inaccuracies in
pulse timings, inaccuracies in pulse amplitudes, and fluc-
tuations of the Rydberg levels due to e.g. the presence
of DC electric fields. We assume all fluctuations to be
uncorrelated and calculate the mean gate fidelity in the

Problems:

Simultaneous pulses: short
(strong) pulses break blockage;
population in |i〉

STIRAP: adiabaticity (slow);
phase alignment is difficult
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FIG. 2: (Color online) Three sequential Blackman pulse pairs
implementing a C-PHASE gate via Rydberg blockade.

STIRAP. The sequence implementing the gate can be
composed of simultaneous pulse pairs, STIRAP pulses
or a combination of the two. We discuss all three possi-
bilities in the following.

A. Sequence of three simultaneous pulse pairs

We first consider three simultaneous pulse pairs and
take the pulses to be Blackman pulses, i.e., the envelope
is given by

S(t) =
E0

2
(1 � a cos (2⇡t/T ) + a cos (4⇡t/T )) (4)

with a = 0.16. A corresponding sequence with the pulse
amplitudes chosen to yield two ⇡-pulses on the left atom
and one 2⇡-pulse on the right atom is shown Fig. 2. The
2⇡-pulse on the right atom is comparatively long in order
to ensure fulfillment of the blockade condition, Eq. (3).
Note that the choice of identical peak Rabi frequencies for
the red and blue laser, ⌦B,max = ⌦R,max, is the only one
possible to guarantee complete population inversion in a
three-level system using simultaneous pulses [9]. The an-
alytical solution which yields complete population trans-
fer is based on adiabatic elimination of the intermediate
level and a ⇡-pulse in the ensuing e↵ective two-level sys-
tem [9].

The pulse sequence shown in Fig. 2 yields an average
gate fidelity of F = 0.999: Provided the peak amplitudes
of the pulses are adjusted to give pulse areas of exactly ⇡
and 2⇡, respectively, and the pulses are su�ciently long
such that the peak amplitudes do not violate the block-
ade condition, Eq. (3), F can be brought arbitrarily close
to one. This implies in particular that for peak ampli-
tudes of the order of 100 MHz, we do not yet see an e↵ect
of dynamical Stark shifts. The minimum gate duration is
determined by Eq. (3). This is illustrated by Fig. 3 which
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FIG. 3: (Color online) Quantum speed limit for the Ry-
dberg gate using simultaneous Blackman pulse pairs: For
short pulses, the amplitude of the 2⇡-pulse is large enough
to break the Rydberg blockade such that |rri gets populated
(dashed green line). Moreover, population of the intermediate
level (blue dot-dashed line) cannot be avoided despite a large
single-photon detuning due to the large bandwidth of a short
pulse.

shows the average gate fidelity together with the maxi-
mum populations in the intermediate level on either left
or right atom and in |rri as a function of duration of the
pulse acting on the right atom. The 2⇡-pulse cycles the
right atom to the Rydberg state and back without popu-
lating it due to the Rydberg-Rydberg interaction shifting
the level |rri out of resonance. However, condition (3) is
violated for durations of the 2⇡-pulse of less than 200 ns
due to the correspondingly large peak amplitudes, and
population in |rri is observed, cf. green dashed curve in
Fig. 3. For pulse durations of less than 20 ns, a further er-
ror is introduced by incomplete population cycling on all
transitions. It is reflected in population of the intermedi-
ate level on both left and right atom, cf. blue dot-dashed
curve in Fig. 3. This error is due to a breakdown of
the condition for adiabatic elimination of the intermedi-
ate level. The influence of losses and noise which might
compromise the gate fidelity will be discussed below in
Section III D.

B. Sequence of STIRAP pulse pairs

STIRAP is a very popular scheme to achieve popula-
tion transfer in three-level systems where the interme-
diate level has a short lifetime since it allows for elimi-
nating spontaneous emission loss from the intermediate
level [11]. It is based on adiabatically following a dynamic
dark state that does not contain an |ii-component. The
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FIG. 4: A sequence of STIRAP pulse pairs to implement the
Rydberg C-phase gate: While the pulses acting on the left
atom can be made arbitrarily short, the pulses acting on the
right atom need to be long enough not to break the Rydberg
blockade.

condition for adiabatic following is roughly given by [11]

⌦j � 10

�⌧
(j = B, R) (5)

where �⌧ is the time in which the pulses overlap. That is
for short pulses, large amplitudes are required. However,
for a Rydberg gate, the blockade condition, Eq. (3), also
needs to be fulfilled. Therefore STIRAP can only em-
ploy comparatively long pulses, at least for the pulse pair
acting on the right atom. A corresponding sequence of
STIRAP pulse pairs, using short pulses on the left atom
and long pulses on the right atom, is shown in Fig. 4.

In order to quantify violation of the blockade condition,
we define the ’blockade e�ciency’, B, to be

B = max(P1r) �
1

2
P1r(T ) �

✓
max(Prr) �

1

2
Prr(T )

◆
,

(6)
where T is the total time of the pulse sequence and P1r(rr)

the population in |1ri (|rri). B takes values between zero
and one, with one corresponding to a perfect blockade.
Both maximum and final-time populations appear in B
because, in order to have full Rabi cycling, the Rydberg
level must be fully populated (giving a maximum popu-
lation of one) and then fully depopulated (giving a final
population of zero), i.e., considering only the maximum
population does not allow for distinguishing between ⇡
and 2⇡ pulses. The blockade condition, Eq. (3), depends
on the peak amplitude of the pulses whereas the adia-
baticity condition, Eq. (5), depends on the pulses’ com-
plete Rabi angle. For short pulses the Rabi angle will not
be su�ciently large to satisfy the adiabaticity condition
without requiring a peak amplitude so high that it will
break the blockade. This is illustrated in Fig. 5 (top),
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FIG. 5: (Color online) Breakdown of the Rydberg-Rydberg
blockade for STIRAP: Only long gate durations allow for am-
plitudes that are su�ciently large to ensure adiabaticity in
STIRAP while being small enough not to break the Rydberg
blockade (lower panel). For short gate durations, the am-
plitudes that are required to ensure adiabaticity will always
break the Rydberg blockade (upper panel).

where for small amplitudes both the maximum and final
|1ri populations rise together: our Rabi angle is less than
⇡ (blue long-dashed and green dashed lines). Then, as
the final |1ri population begins to fall (red dotted and
orange dot-dashed lines) such that the adiabaticity con-
dition is better fulfilled, the blockade is broken, causing
the drop in the blockade e�ciency, cf. solid black line.
In Fig. 5 (bottom), the maximum and final |1ri popu-
lations rise together (blue long-dashed and green dashed
lines), but |1ri is now fully depopulated, thus achieving
full Rabi cycling, before breaking the blockade. This cor-
responds to the area where B ⇡ 1 seen in the graph.

Even in the regime where both the adiabaticity condi-
tion and the blockade condition are fulfilled, the fidelity
oscillates rapidly as a function of the peak amplitude, as
seen in Fig. 6. This is caused by populating the interme-
diate level |rii. Although this population has little e↵ect
on the overall population dynamics, due to the extremely
large Rabi angles required to perform STIRAP, it does af-
fect the phase. When the additional phase, accumulated
due to population of |rii, is not a multiple of 2⇡, the
fidelity is very low. These oscillations in the fidelity per-
sist also in the regime where the adiabaticity and block-
ade condition cannot be fulfilled simultaneously, but the
fidelity then never reaches one, even for the peaks of the
oscillations.
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FIG. 6: (Color online) Gate fidelity for the Rydberg gate
using STIRAP pulse pairs: even for amplitudes for which the
blockade condition, Eq. (3), is fulfilled, the gate fidelity may
be low due to improper phase alignment.
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FIG. 7: (Color online) Fidelity vs overlap length for the mixed
scheme using STIRAP pulses on the left atom and simulta-
neous pulses on the right atom. The overlap length is the
amount of time that each STIRAP pulse pair acting on the
left atom overlaps with the central pulse pair acting on the
right atom.

C. Mixed scheme: STIRAP-⇡-pulses and
simultaneous 2⇡-pulses

The primary drawbacks of the simultaneous pulses are
the unwanted population in the intermediate level for
the pulses acting on the left atom and a relatively large
sensitivity of the pulses to experimental variations. On
the other hand, the primary drawback of STIRAP is the
breakdown of the Rydberg-Rydberg blockade, which re-
sults in employing an extremely long pulse acting on the
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FIG. 8: (Color online) Mixed scheme: STIRAP pulse pairs for
robust population transfer on the left atom, and simultaneous
pulses for the 2⇡ rotation of the right atom.

right atom. This issue, however, is not present when us-
ing STIRAP for the pulses acting on the left atom. We
therefore investigate a mixed scheme, consisting of STI-
RAP pulses to drive the ⇡ rotations on the left atom and
simultaneous pulses to drive the 2⇡ rotation on the right
atom, cf. Fig. 8. By doing so we use each method where
it is most e↵ective. Furthermore, the pulses on the left
and right atom can be overlapped without any apprecia-
ble loss in fidelity. This is because the pulses acting on
the right atom only drive significant population trans-
fer during the central third of the pulses. As long as
the left atom is populated by the time the amplitude
of the pulses acting on the right atom becomes signfi-
cant, the blockade is still e↵ective. This is illustrated in
Fig. 7, where the two STIRAP pulses acting on the left
atom, that bookend the central pulses acting on the right
atom, are moved in towards the center. As seen in Fig. 7,
the pulses can be compressed quite far: By overlapping
the STIRAP pulses with the central pulses for 250 ns, cf.
Fig. 8, the gate duration can be reduced from 1300 ns to
800 ns.

D. Robustness

For all three variants of pulse sequences, the gate fi-
delity in an actual experiment will be compromised by
noise and experimental inaccuracies. We consider in the
following three main sources of errors: inaccuracies in
pulse timings, inaccuracies in pulse amplitudes, and fluc-
tuations of the Rydberg levels due to e.g. the presence
of DC electric fields. We assume all fluctuations to be
uncorrelated and calculate the mean gate fidelity in the

Problems:

Simultaneous pulses: short
(strong) pulses break blockage;
population in |i〉
STIRAP: adiabaticity (slow);
phase alignment is difficult

Michael Goerz • Uni Kassel 28 / 36



3-Level Transfer

Simultaneous pulses:

2

0

0.5

1

1.5

2

0 200 400 600 800
time ( ns )

0
0.1
0.2
0.3
0.4
0.5

am
p
li

tu
d
e 

( 
1
0
0
 M

H
z 

)

left atom

right atom

FIG. 2: (Color online) Three sequential Blackman pulse pairs
implementing a C-PHASE gate via Rydberg blockade.

STIRAP. The sequence implementing the gate can be
composed of simultaneous pulse pairs, STIRAP pulses
or a combination of the two. We discuss all three possi-
bilities in the following.

A. Sequence of three simultaneous pulse pairs

We first consider three simultaneous pulse pairs and
take the pulses to be Blackman pulses, i.e., the envelope
is given by

S(t) =
E0

2
(1 � a cos (2⇡t/T ) + a cos (4⇡t/T )) (4)

with a = 0.16. A corresponding sequence with the pulse
amplitudes chosen to yield two ⇡-pulses on the left atom
and one 2⇡-pulse on the right atom is shown Fig. 2. The
2⇡-pulse on the right atom is comparatively long in order
to ensure fulfillment of the blockade condition, Eq. (3).
Note that the choice of identical peak Rabi frequencies for
the red and blue laser, ⌦B,max = ⌦R,max, is the only one
possible to guarantee complete population inversion in a
three-level system using simultaneous pulses [9]. The an-
alytical solution which yields complete population trans-
fer is based on adiabatic elimination of the intermediate
level and a ⇡-pulse in the ensuing e↵ective two-level sys-
tem [9].

The pulse sequence shown in Fig. 2 yields an average
gate fidelity of F = 0.999: Provided the peak amplitudes
of the pulses are adjusted to give pulse areas of exactly ⇡
and 2⇡, respectively, and the pulses are su�ciently long
such that the peak amplitudes do not violate the block-
ade condition, Eq. (3), F can be brought arbitrarily close
to one. This implies in particular that for peak ampli-
tudes of the order of 100 MHz, we do not yet see an e↵ect
of dynamical Stark shifts. The minimum gate duration is
determined by Eq. (3). This is illustrated by Fig. 3 which
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FIG. 3: (Color online) Quantum speed limit for the Ry-
dberg gate using simultaneous Blackman pulse pairs: For
short pulses, the amplitude of the 2⇡-pulse is large enough
to break the Rydberg blockade such that |rri gets populated
(dashed green line). Moreover, population of the intermediate
level (blue dot-dashed line) cannot be avoided despite a large
single-photon detuning due to the large bandwidth of a short
pulse.

shows the average gate fidelity together with the maxi-
mum populations in the intermediate level on either left
or right atom and in |rri as a function of duration of the
pulse acting on the right atom. The 2⇡-pulse cycles the
right atom to the Rydberg state and back without popu-
lating it due to the Rydberg-Rydberg interaction shifting
the level |rri out of resonance. However, condition (3) is
violated for durations of the 2⇡-pulse of less than 200 ns
due to the correspondingly large peak amplitudes, and
population in |rri is observed, cf. green dashed curve in
Fig. 3. For pulse durations of less than 20 ns, a further er-
ror is introduced by incomplete population cycling on all
transitions. It is reflected in population of the intermedi-
ate level on both left and right atom, cf. blue dot-dashed
curve in Fig. 3. This error is due to a breakdown of
the condition for adiabatic elimination of the intermedi-
ate level. The influence of losses and noise which might
compromise the gate fidelity will be discussed below in
Section III D.

B. Sequence of STIRAP pulse pairs

STIRAP is a very popular scheme to achieve popula-
tion transfer in three-level systems where the interme-
diate level has a short lifetime since it allows for elimi-
nating spontaneous emission loss from the intermediate
level [11]. It is based on adiabatically following a dynamic
dark state that does not contain an |ii-component. The
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FIG. 4: A sequence of STIRAP pulse pairs to implement the
Rydberg C-phase gate: While the pulses acting on the left
atom can be made arbitrarily short, the pulses acting on the
right atom need to be long enough not to break the Rydberg
blockade.

condition for adiabatic following is roughly given by [11]

⌦j � 10

�⌧
(j = B, R) (5)

where �⌧ is the time in which the pulses overlap. That is
for short pulses, large amplitudes are required. However,
for a Rydberg gate, the blockade condition, Eq. (3), also
needs to be fulfilled. Therefore STIRAP can only em-
ploy comparatively long pulses, at least for the pulse pair
acting on the right atom. A corresponding sequence of
STIRAP pulse pairs, using short pulses on the left atom
and long pulses on the right atom, is shown in Fig. 4.

In order to quantify violation of the blockade condition,
we define the ’blockade e�ciency’, B, to be

B = max(P1r) �
1

2
P1r(T ) �

✓
max(Prr) �

1

2
Prr(T )

◆
,

(6)
where T is the total time of the pulse sequence and P1r(rr)

the population in |1ri (|rri). B takes values between zero
and one, with one corresponding to a perfect blockade.
Both maximum and final-time populations appear in B
because, in order to have full Rabi cycling, the Rydberg
level must be fully populated (giving a maximum popu-
lation of one) and then fully depopulated (giving a final
population of zero), i.e., considering only the maximum
population does not allow for distinguishing between ⇡
and 2⇡ pulses. The blockade condition, Eq. (3), depends
on the peak amplitude of the pulses whereas the adia-
baticity condition, Eq. (5), depends on the pulses’ com-
plete Rabi angle. For short pulses the Rabi angle will not
be su�ciently large to satisfy the adiabaticity condition
without requiring a peak amplitude so high that it will
break the blockade. This is illustrated in Fig. 5 (top),
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FIG. 5: (Color online) Breakdown of the Rydberg-Rydberg
blockade for STIRAP: Only long gate durations allow for am-
plitudes that are su�ciently large to ensure adiabaticity in
STIRAP while being small enough not to break the Rydberg
blockade (lower panel). For short gate durations, the am-
plitudes that are required to ensure adiabaticity will always
break the Rydberg blockade (upper panel).

where for small amplitudes both the maximum and final
|1ri populations rise together: our Rabi angle is less than
⇡ (blue long-dashed and green dashed lines). Then, as
the final |1ri population begins to fall (red dotted and
orange dot-dashed lines) such that the adiabaticity con-
dition is better fulfilled, the blockade is broken, causing
the drop in the blockade e�ciency, cf. solid black line.
In Fig. 5 (bottom), the maximum and final |1ri popu-
lations rise together (blue long-dashed and green dashed
lines), but |1ri is now fully depopulated, thus achieving
full Rabi cycling, before breaking the blockade. This cor-
responds to the area where B ⇡ 1 seen in the graph.

Even in the regime where both the adiabaticity condi-
tion and the blockade condition are fulfilled, the fidelity
oscillates rapidly as a function of the peak amplitude, as
seen in Fig. 6. This is caused by populating the interme-
diate level |rii. Although this population has little e↵ect
on the overall population dynamics, due to the extremely
large Rabi angles required to perform STIRAP, it does af-
fect the phase. When the additional phase, accumulated
due to population of |rii, is not a multiple of 2⇡, the
fidelity is very low. These oscillations in the fidelity per-
sist also in the regime where the adiabaticity and block-
ade condition cannot be fulfilled simultaneously, but the
fidelity then never reaches one, even for the peaks of the
oscillations.
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C. Mixed scheme: STIRAP-⇡-pulses and
simultaneous 2⇡-pulses

The primary drawbacks of the simultaneous pulses are
the unwanted population in the intermediate level for
the pulses acting on the left atom and a relatively large
sensitivity of the pulses to experimental variations. On
the other hand, the primary drawback of STIRAP is the
breakdown of the Rydberg-Rydberg blockade, which re-
sults in employing an extremely long pulse acting on the
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FIG. 8: (Color online) Mixed scheme: STIRAP pulse pairs for
robust population transfer on the left atom, and simultaneous
pulses for the 2⇡ rotation of the right atom.

right atom. This issue, however, is not present when us-
ing STIRAP for the pulses acting on the left atom. We
therefore investigate a mixed scheme, consisting of STI-
RAP pulses to drive the ⇡ rotations on the left atom and
simultaneous pulses to drive the 2⇡ rotation on the right
atom, cf. Fig. 8. By doing so we use each method where
it is most e↵ective. Furthermore, the pulses on the left
and right atom can be overlapped without any apprecia-
ble loss in fidelity. This is because the pulses acting on
the right atom only drive significant population trans-
fer during the central third of the pulses. As long as
the left atom is populated by the time the amplitude
of the pulses acting on the right atom becomes signfi-
cant, the blockade is still e↵ective. This is illustrated in
Fig. 7, where the two STIRAP pulses acting on the left
atom, that bookend the central pulses acting on the right
atom, are moved in towards the center. As seen in Fig. 7,
the pulses can be compressed quite far: By overlapping
the STIRAP pulses with the central pulses for 250 ns, cf.
Fig. 8, the gate duration can be reduced from 1300 ns to
800 ns.

D. Robustness

For all three variants of pulse sequences, the gate fi-
delity in an actual experiment will be compromised by
noise and experimental inaccuracies. We consider in the
following three main sources of errors: inaccuracies in
pulse timings, inaccuracies in pulse amplitudes, and fluc-
tuations of the Rydberg levels due to e.g. the presence
of DC electric fields. We assume all fluctuations to be
uncorrelated and calculate the mean gate fidelity in the

Problems:

Simultaneous pulses: short
(strong) pulses break blockage;
population in |i〉
STIRAP: adiabaticity (slow);
phase alignment is difficult

Mixed scheme: STIRAP is fine for
π-pulses, just not for the 2π pulse
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FIG. 9: Robustness of the Rydberg gate with respect to
pulse timing inaccuracies (top) and amplitude fluctuations
(bottom). All fluctuations are assumed to be Gaussian dis-
tributed.
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presence of the fluctuations as

F̃ =

Z
dxP (x)F ⇡

X

i

PiFi , (7)

where P (x) is a Gaussian probability distribution with
given standard deviation. We approximate the integral
for each P (x) by 1000 realizations.

Figures 9 and 10 show the mean gate fidelity vs stan-
dard deviation of the fluctuations in pulse timings, pulse
amplitudes, energy of the Rydberg level. The gate is
found to be surprisingly robust with respect to pulse
timings and amplitudes: only errors of more than a few
nanoseconds in timing and several per cent in amplitude
reduce the gate fidelity appreciably, cf. Fig. 9. A larger

sensitivity is found with respect to the position of the
Rydberg level: Fluctuations of the order of 1% of the
interaction energy u reduce the gate fidelity to 0.5 even
for the most robust scheme, cf. lower panel of Fig. 10.
This is not surprising, since a ’wrong’ energy of the Ryd-
berg level leads to a non-zero two-photon detuning, �2,
and thus a↵ects both the population transfer for the left
atom and the non-local phase accumulated during the
pulse acting on the right atom. Depending on the choice
of the Rydberg level, the fluctuations of the Rydberg level
energy may be suppressed down to the order of 100 kHz.
Birgitta, you might want to elaborate Gate fidelities of
about 0.98 are then within reach, cf. the upper panel of
Fig. 10.

Though all the schemes behave similarly to variations
in timing, there are marked di↵erences in each scheme’s
robustness to fluctuations in pulse amplitude and Ryd-
berg level energy. For inaccuracies in pulse amplitude,
cf. Fig. 9 (bottom), the fidelity achieved with STIRAP
pulses (dot-dashed blue line) is far more susceptible to
small variations than both other schemes. This is due
to the additional phase accumulated for STIRAP during
the central pulse acting on the right atom, caused by un-
desired population entering |rii, cf. section III B. The
mixed scheme (dashed red line) performs slightly better
than the simultaneous scheme (solid black line) in this
respect, as the robust STIRAP pulses acting on the left
atom can achieve e�cient population transfer at a wide
variety of amplitudes. With respect to fluctuations in
the energy of the Rydberg level, in Fig 10 the longer a
given scheme populates |r0i, the less robust that scheme
is. When the population is in the detuned |r0i state, it
accumulates an undesired phase, and this, not the loss
in population transfer e�ciency, is the primary reason
for the drop in fidelity. The longer a scheme remains
in |r0i, the longer it takes to accumulate this additional
phase. The mixed scheme, which overlaps the pulses act-
ing on the left and right atom and thus populates |r0i
for the shortest time possible is the most robust to fluc-
tuations in the Rydberg level energy. This is followed
by the simultaneous scheme, which fully populates |r0i
for 700 ns, and finally the STIRAP scheme, which fully
populates |r0i for 4200 ns.

IV. OPTIMAL CONTROL

optimization including spontaneous emission from in-
termediate and Rydberg levels, optimization for ensem-
ble of system copies to account for experimental noise, in-
clude (trivial) one-qubit phases by choice of global phase

compare short and long gate

robustness with respect to fluctuations of Rydberg lev-
els (and possibly amplitude fluctuations), cf. Fig. 11

discuss examples of optimized pulses for short and long
gate, cf. Figs. 12, 13
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(bottom). All fluctuations are assumed to be Gaussian dis-
tributed.
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presence of the fluctuations as

F̃ =

Z
dxP (x)F ⇡

X

i

PiFi , (7)

where P (x) is a Gaussian probability distribution with
given standard deviation. We approximate the integral
for each P (x) by 1000 realizations.

Figures 9 and 10 show the mean gate fidelity vs stan-
dard deviation of the fluctuations in pulse timings, pulse
amplitudes, energy of the Rydberg level. The gate is
found to be surprisingly robust with respect to pulse
timings and amplitudes: only errors of more than a few
nanoseconds in timing and several per cent in amplitude
reduce the gate fidelity appreciably, cf. Fig. 9. A larger

sensitivity is found with respect to the position of the
Rydberg level: Fluctuations of the order of 1% of the
interaction energy u reduce the gate fidelity to 0.5 even
for the most robust scheme, cf. lower panel of Fig. 10.
This is not surprising, since a ’wrong’ energy of the Ryd-
berg level leads to a non-zero two-photon detuning, �2,
and thus a↵ects both the population transfer for the left
atom and the non-local phase accumulated during the
pulse acting on the right atom. Depending on the choice
of the Rydberg level, the fluctuations of the Rydberg level
energy may be suppressed down to the order of 100 kHz.
Birgitta, you might want to elaborate Gate fidelities of
about 0.98 are then within reach, cf. the upper panel of
Fig. 10.

Though all the schemes behave similarly to variations
in timing, there are marked di↵erences in each scheme’s
robustness to fluctuations in pulse amplitude and Ryd-
berg level energy. For inaccuracies in pulse amplitude,
cf. Fig. 9 (bottom), the fidelity achieved with STIRAP
pulses (dot-dashed blue line) is far more susceptible to
small variations than both other schemes. This is due
to the additional phase accumulated for STIRAP during
the central pulse acting on the right atom, caused by un-
desired population entering |rii, cf. section III B. The
mixed scheme (dashed red line) performs slightly better
than the simultaneous scheme (solid black line) in this
respect, as the robust STIRAP pulses acting on the left
atom can achieve e�cient population transfer at a wide
variety of amplitudes. With respect to fluctuations in
the energy of the Rydberg level, in Fig 10 the longer a
given scheme populates |r0i, the less robust that scheme
is. When the population is in the detuned |r0i state, it
accumulates an undesired phase, and this, not the loss
in population transfer e�ciency, is the primary reason
for the drop in fidelity. The longer a scheme remains
in |r0i, the longer it takes to accumulate this additional
phase. The mixed scheme, which overlaps the pulses act-
ing on the left and right atom and thus populates |r0i
for the shortest time possible is the most robust to fluc-
tuations in the Rydberg level energy. This is followed
by the simultaneous scheme, which fully populates |r0i
for 700 ns, and finally the STIRAP scheme, which fully
populates |r0i for 4200 ns.

IV. OPTIMAL CONTROL

optimization including spontaneous emission from in-
termediate and Rydberg levels, optimization for ensem-
ble of system copies to account for experimental noise, in-
clude (trivial) one-qubit phases by choice of global phase

compare short and long gate

robustness with respect to fluctuations of Rydberg lev-
els (and possibly amplitude fluctuations), cf. Fig. 11

discuss examples of optimized pulses for short and long
gate, cf. Figs. 12, 13
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Optimizing of an Ensemble of Hamiltonians

fluctuations in pulse amplitude → fluctuations in dipole

fluctuations in Rydberg level (external fields)

⇒ Ĥ→ ensemble {Ĥe}
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FIG. 11: Fidelity of the Rydberg gate optimized in the pres-
ence of DC electric fields (top) and amplitude fluctuations
(bottom). Note that each figure shows the robustness for a
di↵erent set of optimized pulses.
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FIG. 12: Pulses Optimized with respect to two-photon de-
tuning (top) and amplitude (bottom) amplitude pulses to be
added

V. CONCLUSIONS

• For simultaneous pulse pairs, the Rabi frequency
of the red and the blue laser must be identical to
achieve population inversion [9]. This is not re-
quired for STIRAP.

• QSL for simultaneous and STIRAP pulse pairs !
combination of STIRAP (for the two ⇡-pulses on
the left atom) and simultaneous pulses (for the 2⇡-
pulse on the right atom)
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FIG. 13: Dynamics under the pulses optimized with respect
to fluctuations in two-photon detuning, as shown in Fig. 12
(show populations, possibly also coherences)
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[5] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshny-
chenko, P. Grangier, and A. Browaeys, Phys. Rev. Lett.
104, 010502 (2010).

[6] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill,

T. Henage, T. A. Johnson, T. G. Walker, and
M. Sa↵man, Phys. Rev. Lett. 104, 010503 (2010).

[7] U. Gaubatz, P. Rudecki, S. Schiemann, and
K. Bergmann, The Journal of Chemical Physics
92, 5363 (1990).

[8] D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev.
Lett. 100, 170504 (2008).

[9] B. W. Shore, Manipulating Quantum Structures Using
Laser Pulses (Cambridge University Press, 2011).

[10] M. H. Goerz, T. Calarco, and C. P. Koch, J. Phys. B 44,
154011 (2011).

[11] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod.
Phys. 70, 1003 (1998).

Michael Goerz • Uni Kassel 30 / 36



Optimizing for Robustness

Optimizing of an Ensemble of Hamiltonians

fluctuations in pulse amplitude → fluctuations in dipole

fluctuations in Rydberg level (external fields)
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ence of DC electric fields (top) and amplitude fluctuations
(bottom). Note that each figure shows the robustness for a
di↵erent set of optimized pulses.
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⇒ Ĥ→ ensemble {Ĥe}
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FIG. 11: Fidelity of the Rydberg gate optimized in the pres-
ence of DC electric fields (top) and amplitude fluctuations
(bottom). Note that each figure shows the robustness for a
di↵erent set of optimized pulses.
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Two Coupled Transmon Qubits

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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Full Hamiltonian

Ĥ = ωc â†â + ω1b̂
†
1b̂1 + ω2b̂

†
2b̂2 − 1

2
(α1b̂

†
1b̂
†
1b̂1b̂1 + α2b̂

†
2b̂
†
2b̂2b̂2)

+ g1(b̂
†
1 â + b̂1â†) + g2(b̂

†
2 â + b̂2â†) + ε∗(t)â + ε(t)â†

Effective Hamiltonian

Ĥeff =
∑
q=1,2

Nq−1∑
i=0

(ω
(q)
i + χ

(q)
i )Π̂

(q)
i +

∑
q=1,2

Nq−1∑
i=0

g
eff (q)
i ε(t)(Ĉ

+ (q)
i + Ĉ

− (q)
i )

+
∑
ij

Jeff
ij (Ĉ

− (1)
i Ĉ

+ (2)
j + Ĉ

+ (1)
i Ĉ

− (2)
j ) .

Michael Goerz • Uni Kassel 33 / 36



Dynamic Stark Shift on Qubit Levels

Possible gate mechanism: Non-linear Stark shift on logical levels

Interaction Energy E00 − E10 − E01 + E11

Michael Goerz • Uni Kassel 34 / 36



Summary and Outlook

Efficient optimization of gates in open quantum systems:

A set of three density matrices is sufficient for gate
optimization: (independent of dimension of Hilbert space!)

one to check dynamical map on subspace
one to check the basis
one to check the phases

Further reduction possible for restricted systems

States can be weighted according to physical interpretation

Ongoing Projects:

Optimizing for robustness is possible by optimizing over an
ensemble of Hamiltonians

Superconducting Qubits: Gate Mechanism. . .
Controlled-Phase gates through non-linear Start shifts?
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Thank You!
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