Grape and LBFGS
Krotov
Coherent Transfer between Vibrational States in Rb2

Comparison of GRAPE/LBFGS and Krotov
in a High-Dimensional Hilbert Space

Michael Goerz
FU Berlin
C. Koch Group

OCT Comparison Workshop
Cambridge, UK
November 26, 2010

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space



Grape and LBFGS
Krotov

Coherent Transfer between Vibrational States in Rb2

Coherent Transfer between Vibrational States in Rb2

FTT TTTT

=

87 1o +
— “Rb's," (5s+5p)
— #55, -3642.03cm’”

bl

AM R

I

f

|

ﬂ

ﬂ

— "Rp xlzg+ (5 + 55)

— #0,-3814.59 cm
— #10,-3252.62cm
#70,-641.75cm

6

7

@

9 19 11 12 13 14 15 16 '17 18 19 20 21 22 23 24 25
internuclear seperation [bohr]

Michael Goerz

GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space



Grape and LBFGS

Krotov

Coherent Transfer between Vibrational States in Rb2



Grape and LBFGS



Grape and LBFGS
Krotov
Coherent Transfer between Vibrational States in Rb2

Grape

GRAPE: Gradient Ascent Pulse Engineering

o

original value

Fig. 1. Schematic representation of a control amplitude w(t),
consisting of N steps of duration Ar = T/N. During each step j, the
control amplitude u(j) is constant. The vertical arrows represent
gradients 5%, /du;(/), indicating how each amplitude u(j) should be
modified in the next iteration to improve the performance function @. at time index j: go in direction of gradient

uk ()

Pulse Update

u(j) — uk(f) — eg—=

9%,
Qug(j)
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Second Derivative: Newton's Method

Newton’s method (one-dimensional case)

F (%0 + Ax) = £ (x0) + £ (x0) - Ax + %f” (0) - (Bx)2

£’ (xn)

df (xo + Ax) _ B
- f11 (Xn)

d(Ax)

0 = Xn+1 = Xn
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Second Derivative: Newton's Method

Newton’s method (one-dimensional case)

f(x0 4+ Ax) = f (x0) + ' (x0) - Ax + %f” (x0) - (Ax)?

()
7 (xn)

df (xo + Ax)

0 = =
d (AX) Xn+1 Xn

Newton's method (multi-dimensional case)

Sequence .
Zni1 = % — H ' (%) - VI (%)

converges towards extremum.
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Gradient Descent and

Optimization towards an extremal point by gradient descent (green) and Newton's
method (red)
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Quasi-Newton

Newton's method (multi-dimensional case)

Sequence .
Rni1 = Zn — H 1 (%) - VI (%)

converges towards extremum.
Find matrix B as approximation to H~! so that B fulfills the secant equation.

Secant Equation

' (xo + Ax) — ' (x0)
(x0 + Ax) — xo

=B

Underdetermined in higher dimensions! LBFGS is one option to construct B.
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Quasi-Newton Algorithms

Quasi-Newton method (general)

Given a Xy € RN chosen sufficiently close to a local extremum Xg of f and an initial
guess for the Hessian By (for example By = /) repeat the following steps to obtain Xg:

Calculate the step AXy using the current approximated Hessian By by:
= il e
AXk :—Bk Vf(xk)
A Calculate the new Xjy1: X1 = Xk + AXk.
Use the gradient at the new point V£ (%.1) and the difference in gradients

between new and old point: 3 = V£ (Xkp1) — VF (%) to find a new
approximation for the Hessian By .

Linesearch

Introduce parameter o € [0, 1] to modify step size:

ARy = —ay - BV (%)
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LBFGS

m Quasi-Newton algorithms are approximate solutions to an extremization problem
using information from the second order Taylor expansion of the function

m BFGS is a quasi-Newton algorithm using a rank-two update formula involving
only gradients to the Hessian needed to determine the update direction; for
convex functions it is globally and monotonic convergent if one enhances it by
line search fulfilling the Wolfe conditions

m L-BFGS uses only information from the gradients and point vectors of previous
steps to solve the memory problem in storing the BFGS approximated Hessian -
under certain additional assumptions the convergence behavior stays intact

An LBFGS implementation is available as a free Fortran 77 library:

Zhu et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw. 23, 550 (1997)
http://portal.acm.org/citation.cfm?id=279236
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Calculating the Gradient

Ve . . . . Wy

T T
= 4(\.}(7))+/t:0ga(€(t))dt+/ gs(V, ) dt

t=0
- —§Rtr{OTU (1,0} = fénz<wtg |O(T.0)| win )
g = %(E_eold)

Gradient for every pulse value

aJ OF 0 @ 2
G=—=—"—+4+— = (e — €M) At
€ e + Ocj =~ S; (6 €i )
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Calculatin

"Uin' . . . . ’wtg
'\61/"\627"\63/"\64/"\65/'
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The Basic Idea of Krotov: Convergence by Construction

Ingredients:
m final-time target JrleT, ©%]
m time-dep. targets / costs gale]l + gble(t), o* (1)]
m equations of motion ih%\cp(t)) =H(t)|e(t)) |e(to)) = |po)

Construction of auxiliary functional L

Lip, 0" ¢, @] = J[p, ™, €]
choose arbitrary scalar potential ®[p, ©*, t] such that
L[(pi7 S0*,1'7 6i7 ‘b] 2 L[SOH'l, (p*,i+17 6H»l7 d)]

building in monotonic convergence
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Auxiliary functional L

L[‘Pv 90*767(‘)] = G[So( T)v‘P*(T)] - ¢[‘P(0)7<P*(0)70]
T
- [ RIe0. 700, te
final-time contribution:

Gp(T), ™ (T)] = Irlp(T), ™ (T)] + @[ (T), ¢"(T), T]

intermediate-time contribution:

RIp(t), " (1), e().6] = f(ga[em]+gb[so(r),so*(t)1)
ap N .
+a + o |:Vgok® . fk[@7@ s € t]

+th; b - fk* [@7 90*7 €, t]]
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Central ldea of Krotov's Method

We want a minimum of L, i.e. minimum of G & maximum of R
but L is changed by both changes in ¢ and changes in €

Krotov's Solution

=i

(i) choose ® at the extremum, @', such that it is the worst possible choice with
respect to any change in the states ~ maximize L when going from @' to @'*!
for fixed €’

(ii) then any change in the field from €' to € will lead to a minimization of L

E(i+1)(t) = arg max R (@‘(t)(i+1), e(t), t) or
€(t)

o

i i 9%R i i
=(i+1) _(i+1) _ =(i+1) _(i+1)
e @ € t) =0 , ( , € ,t) <0

) ) 862
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Pulse Update by Krotov

Krotov Update Formula

N
Ae(t) = (73 |:Z ak <‘Uin,k ‘GT UNT — t,eN)al(0 — ¢, €(i+1))’ Wink

k=1

interference between past and
future events

Michael Goerz
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Second Order Krotov

Second Order Krotov Update Formula
S(t) ¢
Ae(t) = — t
ot =23 {} (0w |2

k=1

¢('+1 (t)> + first order

N ~
second order — %t) Z < '+1 (t) %—H ¢E{'+l)(t)>:|

Second Order o(t)

for B#£0
for B=0

q
PN
=
=
Il
—
I o
!
=
S
—~
@O
|
pN|
Nl
Wi

Daniel Reich, Mamadou Ndong and Christiane P. Koch

Monotonically convergent optimization in quantum control using Krotov's method
arXiv:1008.5126
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Questions for LBFGS

Cost Functional

s= = (v om0 vi) + [ ety

m Can | include the running cost?
m Which order of the gradient do | need?
m How much does LBFGS improve on Grape?

m How does LBFGS compare to Krotov?
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Simple Problem: v=10 - v =0
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Running cost with LBFGS (v = 10 — v = 0)

0 100 200 300 400 500
iteration
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Remember the Linesearch!

800 xterm )

Default Aramis

**k Do the OCT ***

Tue Nov 23 23:47:52 +0100 2010
Initializing LBFGS
RUNNING THE L-BFGS-B CODE

Machine precision = 2.2200-16

N = 20672 M= 1@
This problem is unconstrained.

Done with LBFGS Initialization

Iter. | Fidelity | Infidelity | g_a_int | g b int | J LS|
@ | 9.020042 | 9.7995BE-01 | O.0000DE+00 | O.0DPORE+00 | -2.00416E-02 | @ |
1| ©.020088 | 9.79912E-01 | 2.30396E-05 | O.DDDOOE+DE | -2.00645E-02 | 10 |
2 | ©.920133 | 9.79867E-0L | 2.25744E-05 | ©.0DDOOE+0E | -2.01100E-02 | 9 |
3 | @.920178 | 9.79822E-01 | 2.25761E-05 | O.00GOGE+08 | -2.@1550E-02 | 9 |
4 | @.020223 | 9.79777E-01 | 2.25774E-05 | ©.000OOE+00 | -2.02001E-02 | 9 |
5 | ©.020268 | 9.79732E-01 | 2.257BGE-05 | O.DDDOOE+DE | -2.02451E-02 | 9 |
6 | @.828313 | 9.79687E-01 | 2.25799E-85 | O.DDGOOE+08 | -2.82901E-02 | 9 |
7 | @.020358 | 9.79642E-01 | 2.25811E-05 | ©.000OOE+08 | -2.83351E-02 | 9 |
B | ©.020403 | 9.79597E-01 | 2.25824E-05 | O.DDDOOE+DE | -2.0380ZE-02 | 9 |
9 | 9.020448 | 9.79552E-01 | 2.25836E-05 | ©.0DGOOE+80 | -2.84252E-02 | 9 |
10 | @.020493 | 9.79507E-01 | 2.25B49E-05 | 0.00QOOE+00 | -2.04702E-02 | 9 |

goerz@n@44: /local_scratch/132176. torque. cluster . physik. fu-berlin.de$ [
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Running cost with LBFGS (v = 10 — v = 0)

200 300 400 500
iteration
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Order of the Gradient in LBFGS (v =10 — v = 0)

1 - |
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LBFGS vs Grape (v =10 — v = 0)
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Krotov vs LBFGS (v =10 — v = 0)
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LBFGS adjusted for LS (3rd order grad)

Michael Goerz

iteration

500

1 — —
i —
0.995 —
5 0.99 — N
:
0.985 —
0.98 ‘ ‘
100 200 300 400 500
| | |
0 200 300 400

GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space



m Can | include the running cost? — No

Which order of the gradient do | need? — At least second order
m How much does LBFGS improve on Grape? — A lot. (Forget about Grape)
m How does LBFGS compare to Krotov? — Not too shabby



More Advanced Problem: v=70 — v =0
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Running cost with LBFGS (v =70 — v = 0)
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Running cost with LBFGS (v =70 — v = 0)
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LBFGS vs Grape (v =70 — v = 0)

LBFGS 3rd order

Grape 3rd order
\
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Order of the Gradient in LBFGS (v =70 — v = 0)
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Krotov vs LBFGS (v =70 — v = 0)
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Krotov Second Order

0.8 50— first order, Kb =1 i
first order, 7‘&» =20

- 0.6 0.5 2, /NT, 2, =20 0.99]
b 04 WNT, 3 =20
02ff — C=20@Ag). 3 =20
- b o | | . =
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- . =06
0.2 ARG w T 04 B
- s ‘ k 2
000 ¢ 028ky .31
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FIG. 2: (color online) Convergence of the first order and sec-
ond order constmct»lons of.the.nptlmlzauon algorithm as mea- ond order constructions for state-to-state transfer with state-
sured by the final-time objective, Jr, for state-to-state trans- - A .

dependent cost. The operator D is taken to be the pro,

fer from vibrational level v = 10 to v = 0. onto a forbidden subspace, i.e. the second order construction
is required.
Daniel Reich, Mamadou Ndong and Christiane P. Koch
Monotonically convergent optimization in quantum control using Krotov's method.
arXiv:1008.5126

FIG. 5: (color online) Convergence of the first order and sec-
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Conclusions

m Use LBFGS if gradient can be calculated easily. Watch the number of
linesearches if propagation is expensive.

m Make sure the gradient is exact enough (at least second order)

Use Krotov second order when cost functional requires it, e.g. with
state-dependent costs.

m Combine Krotov with LBFGS?
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Thank Youl!

AG Koch — Moving from Berlin to Kassel!
m Christiane Koch, already at Kassel
m Daniel Reich
m Mamadou Ndong, now at Laboratoire de Chimie Physique d'Orsay
m Ruzin Aganoglu

m Anton Haase
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