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Grape

Acronym

GRAPE: Gradient Ascent Pulse Engineering

optimizations, where the performance can be expressed
in terms of the eigenvalues and eigenfunctions of the to-
tal propagator.

The paper is organized as follows. In Section 2, we
present the basic theoretical ideas and numerical optimi-
zation algorithms directly applicable to the problem of
pulse design. To illustrate the method, we present three
simple but non-trivial applications to coupled spin sys-
tems both in the presence and in the absence of relaxa-
tion. In Section 3.1, we look at the problem of finding
maximum coherence transfer achievable in a given time
and the design of pulse sequences that achieve this trans-
fer. In Section 3.2, the algorithm is used to find relaxa-
tion optimized pulse sequences that perform desired
coherence transfer operations with minimum losses. In
Section 3.3, we design pulse sequences that produce a
desired unitary propagator in a network of coupled
spins in minimal time. In all examples, we compare the
results obtained by the numerical optimization algo-
rithm with optimal solutions obtained by analytical
arguments based on geometric optimal control theory.
In the conclusion section, we discuss the convergence
properties of the proposed algorithm and possible
extensions.

2. Theory

2.1. Transfer between Hermitian operators in the absence
of relaxation

To fix ideas, we first consider the problem of pulse de-
sign for polarization or coherence transfer in the absence
of relaxation. The state of the spin system is character-
ized by the density operator q (t), and its equation of
motion is the Liouville–von Neuman equation [15]

_qðtÞ ¼ $i H0 þ
Xm

k¼1

ukðtÞHk

 !

; qðtÞ

" #

; ð1Þ

where H0 is the free evolution Hamiltonian, Hk are the
radiofrequency (rf) Hamiltonians corresponding to the
available control fields and u (t) = (u1 (t), u2 (t), . . .,um (t))
represents the vector of amplitudes that can be changed
and which is referred to as control vector. The problem
is to find the optimal amplitudes uk (t) of the rf fields that
steer a given initial density operator q (0) = q0 in a spec-
ified time T to a density operator q (T) with maximum
overlap to some desired target operator C. For Hermi-
tian operators q0 and C, this overlap may be measured
by the standard inner product

hCjqðT Þi ¼ tr CyqðT Þ
! "

: ð2Þ

(For the more general case of non-Hermitian operators,
see Section 2.2). Hence, the performance index U0 of the
transfer process can be defined as

U0 ¼ hCjqðT Þi: ð3Þ

In the following, we will assume for simplicity that
the chosen transfer time T is discretized in N equal steps
of duration Dt = T/N and during each step, the control
amplitudes uk are constant, i.e., during the jth step the
amplitude uk (t) of the kth control Hamiltonian is given
by uk (j) (cf. Fig. 1). The time-evolution of the spin sys-
tem during a time step j is given by the propagator

Uj ¼ exp $iDt H0 þ
Xm

k¼1

ukðjÞHk

 !( )

: ð4Þ

The final density operator at time t = T is

qðT Þ ¼ UN & & &U 1q0U
y
1 & & &U

y
N ; ð5Þ

and the performance function U0 (Eq. (3)) to be maxi-
mized can be expressed as

U0 ¼ hCjUN & & &U 1q0U
y
1 & & &U

y
N i: ð6Þ

Using the definition of the inner product (cf. Eq. (2))
and the fact that the trace of a product is invariant un-
der cyclic permutations of the factors, this can be rewrit-
ten as

U0 ¼ hU y
jþ1 & & &U

y
NCUN & & &Ujþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kj

j Uj & & &U 1q0U
y
1 & & &U

y
j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qj

i;

ð7Þ

where qj is the density operator q (t) at time t = jDt and
kj is the backward propagated target operator C at the
same time t = jDt. Let us see how the performance U0

changes when we perturb the control amplitude uk (j)
at time step j to uk (j) + duk (j). From Eq. (4), the change
in Uj to first order in duk (j) is given by

dUj ¼ $iDtdukðjÞHkUj ð8Þ

with

HkDt ¼
Z Dt

0

UjðsÞHkUjð$sÞds ð9Þ

Fig. 1. Schematic representation of a control amplitude uk (t),
consisting of N steps of duration Dt = T/N. During each step j, the
control amplitude uk (j) is constant. The vertical arrows represent
gradients dU0=dukðjÞ, indicating how each amplitude uk (j) should be
modified in the next iteration to improve the performance function U0.

N. Khaneja et al. / Journal of Magnetic Resonance 172 (2005) 296–305 297

uk (j)

Φ0

original value

at time index j : go in direction of gradient

Pulse Update

uk (j) −→ uk (j)− ε
∂Φ0

∂uk (j)
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Second Derivative: Newton’s Method

Newton’s method (one-dimensional case)

f (x0 + ∆x) = f (x0) + f ′ (x0) ·∆x +
1

2
f ′′ (x0) · (∆x)2

df (x0 + ∆x)

d(∆x)
= 0 ⇒ xn+1 = xn −

f ′ (xn)

f ′′ (xn)

Newton’s method (multi-dimensional case)

Sequence
~xn+1 = ~xn − H−1

f (~xn) · ~∇f (~x0)

converges towards extremum.

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space



Grape and LBFGS
Krotov

Coherent Transfer between Vibrational States in Rb2

Second Derivative: Newton’s Method

Newton’s method (one-dimensional case)

f (x0 + ∆x) = f (x0) + f ′ (x0) ·∆x +
1

2
f ′′ (x0) · (∆x)2

df (x0 + ∆x)

d(∆x)
= 0 ⇒ xn+1 = xn −

f ′ (xn)

f ′′ (xn)

Newton’s method (multi-dimensional case)

Sequence
~xn+1 = ~xn − H−1

f (~xn) · ~∇f (~x0)

converges towards extremum.

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space



Grape and LBFGS
Krotov

Coherent Transfer between Vibrational States in Rb2

Gradient Descent and Newton’s Method

Optimization towards an extremal point by gradient descent (green) and Newton’s
method (red)
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Quasi-Newton

Newton’s method (multi-dimensional case)

Sequence
~xn+1 = ~xn − H−1

f (~xn) · ~∇f (~x0)

converges towards extremum.

Find matrix B as approximation to H−1 so that B fulfills the secant equation.

Secant Equation

f ′ (x0 + ∆x)− f ′ (x0)

(x0 + ∆x)− x0
= B

Underdetermined in higher dimensions! LBFGS is one option to construct B.
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Quasi-Newton Algorithms

Quasi-Newton method (general)

Given a ~x0 ∈ RN chosen sufficiently close to a local extremum ~xE of f and an initial
guess for the Hessian B0 (for example B0 = I ) repeat the following steps to obtain ~xE :

1 Calculate the step ∆~xk using the current approximated Hessian Bk by:
∆~xk = −B−1

k · ~∇f (~xk ).

2 Calculate the new ~xk+1: ~xk+1 = ~xk + ∆~xk .

3 Use the gradient at the new point ~∇f (~xk+1) and the difference in gradients

between new and old point: ~yk = ~∇f (~xk+1)− ~∇f (~xk ) to find a new
approximation for the Hessian Bk+1.

Linesearch

Introduce parameter αk ∈ [0, 1] to modify step size:

∆~xk = −αk · B−1
k · ~∇f (~xk )

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space
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LBFGS

Quasi-Newton algorithms are approximate solutions to an extremization problem
using information from the second order Taylor expansion of the function

BFGS is a quasi-Newton algorithm using a rank-two update formula involving
only gradients to the Hessian needed to determine the update direction; for
convex functions it is globally and monotonic convergent if one enhances it by
line search fulfilling the Wolfe conditions

L-BFGS uses only information from the gradients and point vectors of previous
steps to solve the memory problem in storing the BFGS approximated Hessian -
under certain additional assumptions the convergence behavior stays intact

An LBFGS implementation is available as a free Fortran 77 library:

Zhu et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw. 23, 550 (1997)
http://portal.acm.org/citation.cfm?id=279236
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Calculating the Gradient

Ψin

ε1 ε2 ε3 ε4 ε5

Ψtg

J = −F (Ψ(T )) +

∫ T

t=0
ga(ε(t)) dt+

∫ T

t=0
gb(Ψ, ε)) dt

F =
1

N
< tr

{
Ô†Û(T , 0)

}
=

1

N
<

N∑
k=1

〈
Ψtg

∣∣∣Û(T , 0)
∣∣∣Ψin

〉
ga =

α

S(t)

(
ε− εold

)2

Gradient for every pulse value

Gi =
∂J

∂εi
= −

∂F

∂εi
+

∂

∂εi

∑
i

α

Si

(
εi − εold

i

)2
∆t
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Calculating the Gradient

Ψin

ε1 ε2 ε3 ε4 ε5

Ψtg

∂

∂ε2
F = <

〈
Ψtg

∣∣∣∣∣Û5Û4Û3
∂Û2

∂ε2
Û1

∣∣∣∣∣Ψin

〉
; Ûi = e−i Ĥ(εi )∆t

= <
〈

Ψbw

∣∣∣∣∣∂Û2

∂ε2

∣∣∣∣∣Ψfw

〉

∂Ûi

∂εi
=

∂

∂εi
e−i Ĥ(εi )∆t

=
∞∑

n=1

(−i∆t)n

n!

n−1∑
k=0

Ĥk ∂H(εi )

∂εi
Ĥn−k−1
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The Basic Idea of Krotov: Convergence by Construction

Ingredients:

final-time target JT [ϕT , ϕ
∗
T ]

time-dep. targets / costs ga[ε] + gb[ϕ(t), ϕ∗(t)]

equations of motion i~ ∂
∂t
|ϕ(t)〉 = Ĥ(t)|ϕ(t)〉 |ϕ(t0)〉 = |ϕ0〉

Construction of auxiliary functional L

L[ϕ,ϕ∗, ε,Φ] = J[ϕ,ϕ∗, ε]

choose arbitrary scalar potential Φ[ϕ,ϕ∗, t] such that

L[ϕi , ϕ∗,i , εi ,Φ] ≥ L[ϕi+1, ϕ∗,i+1, εi+1,Φ]

building in monotonic convergence

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space
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Auxiliary functional L

L[ϕ,ϕ∗, ε,Φ] = G [ϕ(T ), ϕ∗(T )]− Φ[ϕ(0), ϕ∗(0), 0]

−
∫ T

0
R[ϕ(t), ϕ∗(t), ε(t), t]dt

final-time contribution:

G [ϕ(T ), ϕ∗(T )] = JT [ϕ(T ), ϕ∗(T )] + Φ[ϕ(T ), ϕ∗(T ),T ]

intermediate-time contribution:

R [ϕ(t), ϕ∗(t), ε(t), t] = −
(

ga[ε(t)] + gb[ϕ(t), ϕ∗(t)]

)

+
∂Φ

∂t
+

N∑
k=1

[
∇ϕk Φ · fk [ϕ,ϕ∗, ε, t]

+∇ϕ∗
k

Φ · f ∗k [ϕ,ϕ∗, ε, t]

]

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space
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Central Idea of Krotov’s Method

We want a minimum of L, i.e. minimum of G & maximum of R
but L is changed by both changes in ~ϕ and changes in ε

Krotov’s Solution

(i) choose Φ at the extremum, ~ϕi , such that it is the worst possible choice with
respect to any change in the states y maximize L when going from ~ϕi to ~ϕi+1

for fixed εi

(ii) then any change in the field from εi to εi+1 will lead to a minimization of L

ε(i+1)(t) = arg max
ε(t)

R
(
~ϕ(t)(i+1), ε(t), t

)
or

∂R

∂ε

(
~ϕ(i+1), ε(i+1), t

)
= 0 ,

∂2R

∂ε2

(
~ϕ(i+1), ε(i+1), t

)
< 0
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Pulse Update by Krotov

Krotov Update Formula

∆ε(t) =
S(t)

α
=
[

N∑
k=1

ak

〈
Ψin,k

∣∣∣Ô†Û†(T → t, ε(i))µ̂Û(0→ t, ε(i+1))
∣∣∣Ψin,k

〉]

interference between past and
future events

0 t T

f
ϕ0ε

ϕi
ε1

∆ε(t)
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Second Order Krotov

Second Order Krotov Update Formula

∆ε(t) =
S(t)

α
=
[

N∑
k=1

〈
χ

(i)
k (t)

∣∣∣∣∣∂Ĥ

∂ε

∣∣∣∣∣φ(i+1)
k (t)

〉
← first order

second order→ +
σ(t)

2

N∑
k=1

〈
∆φ

(i+1)
k (t)

∣∣∣∣∣∂Ĥ

∂ε

∣∣∣∣∣φ(i+1)
k (t)

〉]

Second Order σ(t)

σ(t) =

{
eB̄(T−t)

(
C̄
B̄
− Ā

)
C̄
B̄

for B̄ 6= 0

C̄(T − t)− Ā for B̄ = 0

Daniel Reich, Mamadou Ndong and Christiane P. Koch
Monotonically convergent optimization in quantum control using Krotov’s method.

arXiv:1008.5126
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Coherent Transfer between Vibrational
States in Rb2
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Questions for LBFGS

Cost Functional

J = −
〈

Ψtg

∣∣∣Û(T , 0)
∣∣∣Ψin

〉
+

∫ T

t=0
ga(ε(t)) dt

Can I include the running cost?

Which order of the gradient do I need?

How much does LBFGS improve on Grape?

How does LBFGS compare to Krotov?

Michael Goerz GRAPE/LBFGS vs. Krotov in a high-dimensional Hilbert Space
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Simple Problem: v = 10 → v = 0
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Running cost with LBFGS (v = 10 → v = 0)
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Remember the Linesearch!
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Running cost with LBFGS (v = 10 → v = 0)
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Order of the Gradient in LBFGS (v = 10 → v = 0)
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LBFGS vs Grape (v = 10 → v = 0)
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Krotov vs LBFGS (v = 10 → v = 0)
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Can I include the running cost? — No

Which order of the gradient do I need? — At least second order

How much does LBFGS improve on Grape? — A lot. (Forget about Grape)

How does LBFGS compare to Krotov? — Not too shabby
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More Advanced Problem: v = 70 → v = 0
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Running cost with LBFGS (v = 70 → v = 0)
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LBFGS vs Grape (v = 70 → v = 0)
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Order of the Gradient in LBFGS (v = 70 → v = 0)
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Krotov vs LBFGS (v = 70 → v = 0)
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Krotov Second Order
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FIG. 2: (color online) Convergence of the first order and sec-
ond order constructions of the optimization algorithm as mea-
sured by the final-time objective, JT , for state-to-state trans-
fer from vibrational level v = 10 to v = 0.

investigate the optimization of a state-to-state transfer,
i.e. we have N = 1. The vibrational eigenstates v =
10 and v = 0 of X1Σ+

g (5s + 5s) are chosen as initial
and target states, respectively. The vibrational period
of the initial state is about 614 fs; we therefore fix the
optimization time to T = 1 ps. The central frequency
is taken to be Ω = ωv=10→v�=0, and the maximum field
amplitude is set to �0 = 1 · 10−2 a.u.

The convergence of the final-time objective JT is shown
in Fig. 2, comparing first order (black circles) and sec-
ond order constructions of the algorithm. A number
of choices for the second order construction is possible.
Since the supremum estimation of A yields zero for bi-
linear final-time costs, Ā can be taken to be equal to
some small positive number, εA, cf. Eq. (79) (dotted
and dashed lines in Fig. 2). Alternatively, A(∆ϕ) can
be calculated according to Eq. (80a), cf. solid red line
in Fig. 2. The latter choice might speed up convergence,
but is more risky: Since Ā = 2A(∆ϕ) can become neg-
ative, the condition for monotonic convergence may be
violated. This is clearly seen in Fig. 2. In the lower in-
set, monotonic convergence is lost for one step after the
first iteration step. We find in this case, that the state
change is almost maximal, |∆ϕ| = 1.95 ≤ 2, i.e. the
worst possible case that the optimization algorithm must
deal with is reached. While the first order construction
converges faster initially, the upper inset shows that all
second order constructions supersede the first order one
as the optimum is reached. This is readily understood
by inspection of Eq. (81): The first order contribution
to the change in the field is closely related to the gra-
dient of the functional which vanishes close to the opti-
mum. Variation of the small positive number, εA, shows
that an optimal choice of εA exists. However, this opti-
mal choice cannot be determined a priori. In terms of
convergence speed close to the optimum, it is therefore
recommendable to choose Ā in terms of A(∆ϕ). Such
a choice effectively makes use of the history of the opti-
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FIG. 3: (color online) Convergence of the first order and sec-
ond order constructions of the optimization algorithm for a
Hadamard gate of the lowest two vibrational levels of the elec-
tronic ground state.

mization through ∆ϕ.
Second, we investigate the optimization of a unitary

transformation. Our target is taken to be the Hadamard
gate on the lowest two vibrational eigenstates of the elec-
tronic ground state potential,

Ô =
1√
2

�
1 1
1 −1

�
,

hence N = 2, and the trace in Eq. (2) is evaluated
over |e = 1, v = 0� and |e = 1, v = 1�. The conver-
gence behavior for this final-time cost is shown in Fig. 3.
The same values for the parameter Ā as in Fig. 2 are
tested. Optimizing a unitary transformation represents
a more difficult control problem than state-to-state opti-
mization. Therefore the fidelities after 500 iteration steps
in Fig. 3 are smaller than those after 250 steps in Fig. 2.
There also exists an optimal choice for εA, cf. Eq. (79),
but this choice differs for the two optimization problems.
This suggests that different optimal εA may be found
for each specific optimization problem. However, in both
cases the most efficient optimization strategy is given by
Ā = 2A(∆ϕ), i.e. the solid red lines in Figs. 2 and 3,
cf. Eqs. (79) and (80a). We therefore conclude that this
represents the recommended choice of Ā.

C. Bilinear final-time cost and state-dependent
intermediate-time cost

We now turn to optimizing the state-to-state trans-
fer from v = 0 to v = 1 and the Hadamard gate of
the previous section taking into account an additional
state-dependent cost, gb. If both a state-dependent cost
and a final-time target are present, the algorithm seeks
to optimize a compromise between the two goals. The
parameters λ0 and λb determine the relative weight of
each target. Monotonic convergence always refers to the
value that the total functional, J of Eq. (1), takes; and
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each separate contribution to J does not need to con-
verge monotonically. Below we will discuss convergence
of both J and JT . In order to render the optimal value
of J independent of the choice of the weights λ0, λb, we
define a normalized functional,

Jnorm =
J

λb − λ0
, λb ≤ 0 , (84a)

Jnorm = 1 − J − λ0

λb − λ0
, λb ≥ 0 , (84b)

that converges toward one.
The cost gb is employed to avoid any population trans-

fer to a forbidden subspace, taken to be the 1Πg(5s+4d)
state [35]. In other words, throughout the complete time
interval, [0, T ], the population shall evolve in the allowed
subspace formed by the X1Σ+

g (5s+5s) and 1Σ+
u (5s+5p)

states. This can be expressed by taking the operator D̂
in Eq.(4) to be one of the two choices,

D̂ = P̂allow = |e1��e1| + |e2��e2|, λb ≤ 0 (85a)

D̂ = P̂forbid = |e3��e3|, λb ≥ 0 , (85b)

where P̂allow and P̂forbid denote the projectors onto the
allowed and forbidden subspaces, respectively. The dif-
ferent signs of the weight λb indicate maximization for
P̂allow and minimization for P̂forbid.

Choosing gb as expectation value of a projection oper-
ator, the analytical estimate for the parameter C of the
second order contribution is given by Eq. (57). However,
let us write explicitly ∆2 of Eq. (15) for the case that the
optimization algorithm is constructed only to first order,

∆2 = −λb
1

T

� T

0

1

N

N�

k=1

�∆ϕk|D̂|∆ϕk� dt .

For D̂ = P̂allow, the necessary condition for monotonic
convergence, ∆2 ≥ 0, is always fulfilled. A second order
construction is therefore not required [35], correspond-
ing to C = 0. This is in accordance with Eq. (57) which
yields a large positive number and C̄ in this case is deter-
mined by −εC , cf. Eq. (79), where εC is a small positive
number. Of course, one can employ a second order con-
struction for D̂ = P̂allow and check whether this improves
convergence. If, on the other hand, the projector onto the
forbidden subspace is assumed in gb, ∆2 ≥ 0 is not neces-
sarily fulfilled and a second order construction is required
to ensure monotonic convergence. Eq. (57) now yields a
large negative number for C since λb is negative, and C̄
is determined by C.

In the calculations presented below, the final time is
set to T = 2 ps, the central frequency of the guess field
is chosen to be Ω = ωv=0→v�=10 and �0 = 2 · 10−4 a.u.
Since the emphasis is on the choice of the parameter C̄,
Ā is taken to be zero.

As in the previous subsection, we first investigate
optimization of a state-to-state transfer. The results
are shown in Fig. 4 for D̂ = P̂allow and in Fig. 5 for
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FIG. 4: (color online) Convergence of the first order and sec-
ond order constructions for state-to-state transfer with state-
dependent cost. The operator D̂ is taken to be the projector
onto an allowed subspace, i.e. the second order construction
is not required.
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FIG. 5: (color online) Convergence of the first order and sec-
ond order constructions for state-to-state transfer with state-
dependent cost. The operator D̂ is taken to be the projector
onto a forbidden subspace, i.e. the second order construction
is required.

D̂ = P̂forbid. While a second order contribution is not
required in Fig. 4, it can be included by taking C̄ to be
equal to −εC , where εC is a small positive number, cf.
Eq. (79) (dotted and dashed lines in Fig. 4). This choice
of C̄ does not affect monotonicity. However, it also does
not yield a faster convergence than the first order algo-
rithm. Alternatively, we can take C̄ = 2C(∆ϕ) where
C(∆ϕ) is calculated according to Eq. (80c). Neglecting
εC in Eq. (79) is somewhat risky and this choice of C̄
does not guarantee monotonic convergence since C(∆ϕ)
can become positive. Indeed, the small ripples in the red
solid line in Fig. 4 illustrate some violation of monotonic-
ity. However, this is more than compensated for by the
improved speed of convergence as compared to the first
order and the conservative choices of C̄ in terms of εC .
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Conclusions

Use LBFGS if gradient can be calculated easily. Watch the number of
linesearches if propagation is expensive.

Make sure the gradient is exact enough (at least second order)

Use Krotov second order when cost functional requires it, e.g. with
state-dependent costs.

Combine Krotov with LBFGS?
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