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|01〉 Ô |01〉

|10〉 Ô |10〉
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Abstract
We consider two transmon qubits [1] coupled via a cavity bus [2]. The strong coupling of each qubit
to the shared cavity modes provides an indirect interaction that in addition to the direct qubit-qubit
interaction can be used to implement a two-quantum gate (e.g. CPHASE). Describing the system
numerically allows us to take into account an arbitrary number of qubit and cavity excitations. Going
beyond the dispersive limit permits the implementation of fast gates, which are necessary to beat
decoherence. Optimal control theory (OCT), specifically Krotov’s method [3], is used to find microwave
pulses that drive the full system in the desired way in the shortest possible amount of time. The
complete system Hamiltonian allows for complex dynamics that OCT can fully exploit. We show
results from such an optimization for a CPHASE gate, for different pulse durations. We also discuss
decoherence and analyze the influence of spontaneous decay of the cavity on the gate fidelity, and give
an outlook on how OCT may find robust pathways.

1 Two Transmon Qubits Coupled via Cavity Bus

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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superconducting qubits inside a transmission line
resonator, Fig. from [5]

Parameters:

• ωc = 8.3 GHz
• ω1 = 6.5 GHz
• ω2 = 6.6 GHz
• α1 = α2 = 150 MHz
• J = 5 MHz
• g1 = g2 = 100 MHz
• |ε(t)| < 50 MHz (if possible)
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with 1© the cavity harmonic oscillator, 2© qubit anharmonic oscillators, 3© direct qubit-qubit coupling,
4© qubit-cavity coupling, and 5© cavity coupling to control field ε(t) ∼ E0 cos(ωLt).

Note: Direct qubit-qubit coupling is weak; entanglement is primarily reached indirectly via interaction
with the cavity 4©.

2 Optimization: Krotov Method
We optimize for Ô =CPHASE by minimizing the functional J containing the gate fidelity F and a
running cost ensuring monotonic convergence, with a scaling parameter λa and a shape function S(t).

J [{φk}, ε] = −F [{φk(T )}] + λa

∫ T
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with ∆ε = εnew − εold, for |φk〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉}, |φk(t)〉 = Û(t, 0; ε) |φk〉.
Pulse update formula [3]:
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3 Decoherence
Open system dynamics with a master equation in Lindblad form [4].

dρ̂

dt
= −i[Ĥ, ρ̂] + κD[â]ρ̂ +

∑

i=1,2

[∑

j
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i
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The parameters γi,j, γφ,i and γthj,i are decay, dephasing and leakage rates, respectively. The cavity

decay is described by κ = 1/τ . For a 3D transmon qubit, lifetime τ can be 20-100 µs.

It is straightforward to write the Krotov update equation (3) for Liouville space, using density matrices
instead of states and using Eq. (4) for propagation. It can be shown that it is sufficient to use three
density matrices as “basis states”:

ρ
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δij , ρ
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Any other distance measure on density matrices may be used.

4 Optimization Results (CPHASE)

100 200 300 400 500 600 700 800 900 1000

gate duration [ns]

10−3

10−2

10−1

100

gate error, no dissipation

gate error, τ = 25µs

gate error, τ = 100µs

∆U

100 200 300 400 500 600 700 800 900 1000
10−8
10−7
10−6
10−5
10−4
10−3
10−2 ∫

Pb dt/T

250
500
750

1000
1250

E0 [GHz] (opt. pulse)

100 200 300 400 500 600 700 800 900 1000

20

30

40

50 Nc

4

5

6 Nq

∆U = 1− tr
[
ÛÛ
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• limits on fidelity: pulse duration too short to generate necessary entanglement (100 ns); difficulty to
restore cavity ground state if too much excitation
• tradeoff between pulse intensity and durations. E0 < 50 MHz only for very long gate times
• possible explanation for oscillations: population in states that cannot be resolved
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Frequencies for transitions from the cavity-dressed logical subspace:

|1, 1, 0〉 → |1, 1, 1〉: 8.308 GHz; |1, 0, 0〉 → |1, 1, 0〉: 6.594 GHz; |0, 1, 0〉 → |1, 0, 1〉: 8.210 GHz;
|0, 1, 0〉 → |0, 1, 1〉: 8.310 GHz; |0, 0, 0〉 → |0, 1, 0〉: 6.594 GHz; |1, 0, 0〉 → |0, 1, 1〉: 8.409 GHz;
|1, 0, 0〉 → |1, 0, 1〉: 8.310 GHz; |0, 0, 0〉 → |1, 0, 0〉: 6.494 GHz; |1, 1, 0〉 → |0, 2, 1〉: 8.110 GHz;
|0, 0, 0〉 → |0, 0, 1〉: 8.311 GHz; |0, 1, 0〉 → |1, 1, 0〉: 6.494 GHz; |1, 1, 0〉 → |1, 0, 2〉: 10.026 GHz;
|1, 1, 0〉 → |1, 2, 0〉: 6.296 GHz; |1, 0, 0〉 → |0, 2, 0〉: 6.396 GHz; |0, 1, 0〉 → |0, 0, 2〉: 10.029 GHz;
|0, 1, 0〉 → |0, 2, 0〉: 6.296 GHz; |0, 1, 0〉 → |2, 0, 0〉: 6.096 GHz; |1, 0, 0〉 → |0, 0, 2〉: 10.128 GHz;
|1, 0, 0〉 → |2, 0, 0〉: 6.196 GHz; |1, 1, 0〉 → |0, 3, 0〉: 5.798 GHz; |1, 1, 0〉 → |0, 1, 2〉: 10.125 GHz;
|1, 1, 0〉 → |2, 1, 0〉: 6.196 GHz; |1, 1, 0〉 → |3, 0, 0〉: 5.499 GHz; |1, 1, 0〉 → |2, 0, 1〉: 7.910 GHz

5 Conclusions & Outlook
•Optimal control successfully finds fast gates at fidelities at the quantum error correction threshold.

Gates are sufficiently fast to (almost) beat decoherence.
• The optimization of a CPHASE gate illustrates the extremely rich dynamics that the Hamiltonian

Eq. (1) provides. Other two-qubit quantum gates are possible as well, and may be more robust in
the presence of decoherence.
• Pulses may populate a significant number of higher qubit and cavity states, requiring a description

beyond an effective two-qubit model. Optimizing from appropriate guess pulses, the number of qubit
and cavity levels can be kept reasonably low (e.g. 4-5 qubit levels, 20 cavity levels)
•Optimize in Liouville space, with full decoherence model (Lindblad equation), improving the fidelity

under dissipation – if possible to the quantum error correction threshold. This can be done efficiently
using the approach presented in section 3. The choice of fidelity may have a significant effect on the
optimization success and should be explored systematically.
•Ultimately: Use the local invariants functional [6] in Liouville space to optimize for the two-qubit

gate least susceptible to decoherence.
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