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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2

Blais et al. Phys. Rev. A 75, 032329 (2007)
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“Pulse-level” control

Bunch of states: {|Ψk(t)〉}
— e.g. two-qubit gate: |00〉 , |01〉 , |10〉 , |11〉
Hamiltonian(s) with control fields: Ĥk({εl(t)}) → time propagation
— assume piecewise-constant: εln for n’th time interval of l ’th control

Functional

J({εnl}) = JT ({|Ψk(T )〉}) +

∫ T

0
ga
(
{εl(t)}, t

)
dt +

∫ T

0
gb
(
{|Ψk(t)〉}, t

)
dt

Gradient-based “open loop” optimization

(∇J)ln ≡
∂J

∂εln
⇒ L-BFGS-B
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backward-mode “adjoint”

v̄j ≡
∂J

∂vj

=
∑

i

v̄i
∂vi
∂vj

sum over all vi

which depend on vj v1 = ε1 v2 = ε2

v3 = sin(v1) v4 =
√
v2

v5 = v1v4

v6 = v3 + v5

J = v6

J(ε1, ε2) = sin(ε1) + ε1
√
ε2

fo
rw

ar
d

b
a
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w

ar
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TABLE I. Relevant contributions to cost functions for quantum
optimal control. Names of contributions indicate the quantity to be
minimized.

µ Cost-function contribution Cµ(u)

1 Target-gate infidelity 1 − | tr(K†
T KN )/D|2

2 Target-state infidelity 1 − |〈!T |!N 〉|2

3 Control amplitudes |u|2

4 Control variations
∑

j,k |uk,j − uk,j−1|2

5 Occupation of forbidden state
∑

j |〈!F |!j 〉|2

6 Evolution time (target gate) 1 − 1
N

∑
j | tr(K†

T Kj )/D|2

7 Evolution time (target state) 1 − 1
N

∑
j |〈!T |!j 〉|2

quantum computing and quantum optics, and discuss the
performance gains achieved by utilizing GPUs.

II. THEORY

We briefly review the essential idea of quantum optimal
control and introduce the notation used throughout our paper.
We consider the general setting of a quantum system with
intrinsic Hamiltonian H0 and a set of external control fields
{u1(t), . . . ,uM (t)} acting on the system via control operators
{H1, . . . ,HM}. The resulting system Hamiltonian is given
by H (t) = H0 +

∑M
k=1 uk(t)Hk . Optimal control theory aims

to minimize deviations from a target state or target unitary
by appropriate adjustments of the control fields uk(t). To
implement this optimization, the time interval of interest is
discretized into a large number N of sufficiently small time
steps δt . Denoting intermediate times by tj = t0 + j δt , the
Hamiltonian at time tj takes on the form

Hj = H0 +
M∑

k=1

uk,jHk. (1)

The control fields subject to optimization now form a set {uk,j }
of d = MN real numbers.

The quantum evolution from the initial time t = t0 to time
tj is described by a propagator Kj , decomposed according to

Kj = UjUj−1Uj−2 . . . U1U0, (2)

where

Uj = exp(−iHjδt) (3)

is the propagator for the short time interval [tj ,tj + δt]. (Here
and in the following, we seth̄ = 1.) Evolution of a select initial
state |!0〉 from t = t0 to t = tj then takes the usual form,

|!j 〉 = Kj |!0〉. (4)

In the decomposition of Kj , each short-time propagator Ui can
be evaluated exactly by matrix exponentiation or approximated
by an appropriate series expansion. Propagation methods
which go beyond the piecewise-constant approximation for
the propagation can further improve speed and accuracy [48].

Optimization of the discretized control fields u ∈ Rd can be
formulated as the minimization of a cost function C(u) where
C : Rd → R+. Table I shows some of the most important

cost-function contributions used for quantum optimal control.
The total cost function is a linear combination of these cost
functions, C =

∑
µ αµCµ. The weight factors αµ must be

determined empirically and depend on the specific problem
and experimental realization at hand. In the following, we
discuss these relevant cost-function contributions.

A. Important types of cost-function contributions

The first cost contribution C1(u) is the primary tool for
realizing a target unitary KT , such as a single- or multiqubit
gate. Cost is incurred for deviations between the target unitary
and the realized unitary KN at a given final time tN . For a
system with Hilbert-space dimension D, its expression 1 −
| tr(K†

T KN )/D|2 [2] represents the infidelity obtained from
the trace distance between the target unitary and the realized
unitary. Minimizing this cost function is the principle goal of
the quantum control problem.

The second cost function C2(u) = 1 − |〈!T |!N 〉|2 mea-
sures the distance between a desired target state |!T 〉 and
the state |!N 〉 realized at the final time tN , as obtained from
evolution of a given initial state |!0〉. In addition, generalizing
C2 to multiple initial and target states is useful for performing
a unitary KT which is only defined on some subspace HS
of the modeled Hilbert space. Such restriction to a selected
subspace is of practical importance whenever a desired unitary
is to be implemented within some computational subspace
only, as is common for quantum computation applications.
There, evolution of higher excited states or auxiliary systems
outside the computational subspace is immaterial. Optimal
control, then, can be achieved by simultaneous evolution of a
set of initial states {|!s

0〉} (s = 1,2, . . . ,S) that forms a basis of
HS . Optimal control fields are obtained from minimizing the
composite state infidelity C2$(u) = 1 − | 1

S

∑
s〈!s

T |PS |!s
N 〉|2

relative to the desired target states |!s
T 〉 = KT |!s

0〉. (Here, PS
is the projector onto subspace HS .)

This composite state-transfer cost function when used over
a complete basis is equivalent to the gate fidelity, but has
several advantages. Most importantly it is more memory
efficient requiring only the current state to be stored rather
than the whole unitary. In addition, it is very amenable to
distributed computing approaches. However, when the unitary
transfer matrix can be stored in memory, propagating the full
unitary can take advantage of the parallelism of the GPU for
smaller problems (see Fig. 3).

Like many optimization problems, quantum optimal control
is typically underconstrained. In order to obtain control fields
that are consistent with specific experimental capabilities and
limitations, it is often crucial to add further constraints on
the optimization. Control fields must be realizable in the
laboratory, should be robust to noise, and avoid large control
amplitudes and rapid variations based on signal output specifi-
cations of instruments employed in experiments. Exceedingly
strong control fields may also be problematic due to heat
dissipation which may, for instance, raise the temperature
inside a dilution refrigerator. These points motivate the
consideration of additional cost-function contributions in the
following.

One such contribution C3(u) = |u|2 suppresses large
control-field amplitudes globally and is commonly employed

042318-2

Table 1 in Leung et al. Phys. Rev. A 95, 042318 (2017)

Arbitrary equations of motion
e.g., quantum trajectories — Abdelhafez et al. Phys. Rev. A 99, 052327 (2019)

GPU support
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(
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2 C (Û) = max |sin(c1,2,3 ± c3,1,2)|
Childs et al. Phys. Rev. A 68, 052311 (2003)

Not analytic!
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Quantum Gate Concurrence
Max concurrence that can be generated for a separable input

1 c1, c2, c3 ∝ eigvals
(

ÛŨ
)

; Ũ = (σ̂y ⊗ σ̂y ) Û (σ̂y ⊗ σ̂y )

2 C (Û) = max |sin(c1,2,3 ± c3,1,2)|
Childs et al. Phys. Rev. A 68, 052311 (2003)

Perfect Entanglers Functional

Find a two-qubit gate with maximum entangling power

FPE =

(
1

detUB

)(
1

4
(tr2[UT

B UB ]− tr[UT
B UBU

T
B UB ])

)(
1

16
Re2[tr[UT

B UB ]]

)
+

+

(
2

detUB

)(
1

4
(tr2[UT

B UB ]− tr[UT
B UBU

T
B UB ])

)(
1

16
Im2[tr[UT

B UB ]]

)

(
1

16
Re[tr2[UT

B UB ]]

)

UB : projection into logical subspace, in Bell basis

Watts et al. Phys. Rev. A 91, 062306 (2015)
Goerz et al. Phys. Rev. A 91, 062307 (2015)
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(

ÛŨ
)
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Childs et al. Phys. Rev. A 68, 052311 (2003)

To a computer, everything is analytic!
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Quantum Gate Concurrence
Max concurrence that can be generated for a separable input

1 c1, c2, c3 ∝ eigvals
(

ÛŨ
)

; Ũ = (σ̂y ⊗ σ̂y ) Û (σ̂y ⊗ σ̂y )

2 C (Û) = max |sin(c1,2,3 ± c3,1,2)|
Childs et al. Phys. Rev. A 68, 052311 (2003)

To a computer, everything is analytic!

Quantum Fisher Information

F (ρ̂) =
∑

i 6=j
2(pi−pj )2

pi+pj

∣∣∣
〈
φi

∣∣∣ Ŝz

∣∣∣φj
〉∣∣∣

2

where pi , |φi 〉 are eigenvalues / eigenstates of ρ̂

— Ma et al.. Phys. Rep. 509, 89 (2011)
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1 Numerical scaling

AD memory overhead
computational overhead (at least on CPU)

2 Framework limitations

Complex numbers?
In-place operations?
Double-precision?

3 Code reuse

Re-implement propagation methods?
Re-use existing GRAPE implementation?
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We don’t have to compromise!
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Gradient of Time Evolution Operator
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— Goodwin, Kuprov, J. Chem. Phys. 143, 084113 (2015)
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Generalized GRAPE scheme
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1○ forward-prop and storage with guess
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2○ backward-prop of extended state/gradient

χ̃k(0) χ̃k(t1)

ε
(0)
l1

∇τ (k)
l1

χ̃k(t). . .

ε
(0)
l2

∇τ (k)
l2

χ̃k(tNT−1)

ε
(0)
l,NT−1

∇τ (k)
l,NT−1

χ̃k(T )

ε
(0)
lNT

∇τ (k)
lNT

. . .

τ (k) = 〈χk(T ) |Ψk(T )〉∇JT = 2Re
∑

k ∇τ (k)



UNCLASSIFIED

GRAPE.jl

Michael Goerz 7 @goerz 14 / 17

Scalable Quantum Control with Semi-Automatic Differentiation



UNCLASSIFIED

JuliaQuantumControl

Michael Goerz 7 @goerz 15 / 17

Scalable Quantum Control with Semi-Automatic Differentiation

Yao Community Call

Thursday, September 1, 12pm EDT (Zoom)
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Benchmarks
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AD-enhanced optimal control without compromises! arXiv:2205.15044

Use optimal data structures

Use polynomial in-place propagators

Use semi-AD implementation of GRAPE

propagation and optimal control are independent

AD and GPU computing are independent

Full power of AD with near-zero overhead

Thank you


