Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Michael Goerz*
Tommaso Calarco†
Christiane P. Koch*

*Universität Kassel
†Universität Ulm

DPG Spring Meeting
Dresden
March 16, 2011
Universal Quantum Computing

Motivation

Theoretical Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Universal Quantum Computing

Controlled Phasegate

\[
\hat{O}(\chi) = \text{CPHASE}(\chi) = \begin{pmatrix}
e^{i\chi} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Controlled-Not

\[\text{CNOT} = \]

- CPHASE(\(\pi\)) equivalent to CNOT \(\Rightarrow\) Universal Quantum Computing
- CPHASE is used in Quantum Fourier Transform

Michael Goerz • Uni Kassel

Optimal Controlled Phasegates for Trapped Neutral Atoms
Two-Qubit Gates on Trapped Neutral Atoms

Calcium:

- $^1S_0 \rightarrow |0\rangle$
- $^1P_1 \rightarrow |a\rangle$
- $^1P_3 \rightarrow |1\rangle$

$\omega_L = 23652 \text{ cm}^{-1}$

- Low-Lying states in Alkaline-Earth atoms or Rydberg states
- Atoms in optical lattice or optical tweezers
The Objective

Problem

- QC with atomic collisions: adiabaticity \Rightarrow slow.
- Strong interaction \Rightarrow fast gates?
 - only if ignoring motion.

Quantum Speed limit

- QSL: What is the maximum speed at which a quantum system can evolve?
- What limits on the gate duration can we find through optimization?
- How do gate durations depend on the interaction strength?
Motivation

Theoretical Model and Optimization Method
Two Calcium Atoms at Short Internuclear Distance
Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

The Objective

Problem

- QC with atomic collisions: adiabaticity \Rightarrow slow.
- Strong interaction \Rightarrow fast gates?
 - only if ignoring motion.

Quantum Speed limit

- QSL: What is the maximum speed at which a quantum system can evolve?
- What limits on the gate duration can we find through optimization?
- How do gate durations depend on the interaction strength?

Approach

- Describe the system including the motional degree of freedom.
- Optimize for varying times / interaction strengths:
 - Two Calcium atoms at fixed distance (fixed interaction): vary T
 - For fixed T, two atoms with “artificial” dipole-dipole interaction $V(R) = -C_3/R^3$: vary C_3
Theoretical Model and Optimization Method

Two-Qubit-Hamiltonian, Optimization with Krotov
System Hamiltonian

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Motivation

Theoretical Model and Optimization Method

Michael Goerz • Uni Kassel

Optimal Controlled Phasgates for Trapped Neutral Atoms
System Hamiltonian

\[d_{x1} \rightarrow \text{integrate out COM} \]

\[R_0 = d \]

\[
\begin{align*}
47304.61 \text{ cm}^{-1} & \quad |aa\rangle \\
38862.37 \text{ cm}^{-1} & \quad |a1\rangle \\
30420.13 \text{ cm}^{-1} & \quad |0a\rangle \\
23652.30 \text{ cm}^{-1} & \quad |a0\rangle \\
15210.06 \text{ cm}^{-1} & \quad |1a\rangle \\
0.0 \text{ cm}^{-1} & \quad |00\rangle \\
\end{align*}
\]
Optimizing the Laser Pulse

Target Functional

\[J = -\frac{1}{N} \text{Re} \left[\text{tr} \left(\hat{O}^\dagger \hat{U} \right) \right] + \int_0^T \frac{\alpha}{S(t)} \Delta \epsilon^2(t) \, dt; \quad \hat{O} = \text{CPHASE} \]
\[\hat{U} = e^{-i\hat{H}(\epsilon(t))t} \]

Krotov: pulse update \(\Delta \epsilon \) minimizing \(J \)

\[\Delta \epsilon \sim \text{Im} \left\langle \Psi_{bw} | \hat{\mu} | \Psi_{fw} \right\rangle \]

Palao, Kosloff,
PRA 68, 062308 (2003)
Measures of Merit

Fidelity F and cost functional J are not very informative.

Control over the Motional Degree of Freedom

$$F_{00} = \left| \langle 00(R) | \hat{U}(T, 0; \epsilon^{opt}) | 00(R) \rangle \right|^2$$

Does $|00\rangle$ return to its initial **vibrational eigenstate**?

Gate Phases

$$\phi_{00} = \arg \left(\langle 00(R) | \hat{U}(T, 0; \epsilon^{opt}) | 00(R) \rangle \right)$$

What is the **phase change** relative to the initial state?

True Two-Qubit Phase

- Cartan Decomposition leads to
 $$\chi = \phi_{00} - \phi_{01} - \phi_{10} + \phi_{11}$$
- Concurrence (Entanglement)
 $$C = \left| \sin \frac{\chi}{2} \right|$$
Two Calcium Atoms at Short Internuclear Distance

For which gate durations can we reach a high-fidelity CPHASE?
Motivation

Theoretical Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Parameters of the Optimization

- Short internuclear distance
 ⇒ sufficient interaction

- Peak intensity ϵ_0
 to induce 1 Rabi cycle

- Pulse duration between $T_{\text{int}}^{1\text{rad}} = 1.23$ ps and $T_v = 800$ ps

Michael Goerz • Uni Kassel

Optimal Controlled Phasegates for Trapped Neutral Atoms
Motivation

Theoretical Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Optimization Success over Pulse Duration

⇒ For small T, vibrational purity is lost with increasing two-qubit phase

⇒ High two-qubit phase \textit{and} high vibrational only for long pulse durations

Michael Goerz • Uni Kassel

Optimal Controlled Phasegates for Trapped Neutral Atoms
System Dynamics for 800 ps Pulse

\[F = 0.997 \]

\[\tau_{00} = \left\langle 00(R) \right| \hat{U}(T, 0; \epsilon^{opt}) \left| 00(R) \right\rangle \]
Motivation

Theoretical Model and Optimization Method

Two Calcium Atoms at Short Internuclear Distance

Two Atoms at Long Distance under Strong Dipole-Dipole Interaction

Can we avoid vibration with very short pulses, but very strong interaction?
Parameters of the Optimization

- Fixed short pulse duration
 \(T = 1 \text{ ps}, \ T = 0.5 \text{ ps} \)

- Realistic lattice spacing
 with strong interaction \(\sim -\frac{C_3}{R^3} \)

- Vary \(C_3 \):
 - \(C_3 = 1 \times 10^6 \)
 Action over 1 ps for Calcium at \(d = 5 \text{ nm} \), scaled to \(d = 200 \text{ nm} \)
 - Increase by three orders of magnitude
 Action over 800 ps for Calcium at \(d = 5 \text{ nm} \), scaled to \(d = 200 \text{ nm} \)

\[C_3 = 1 \times 10^6 \]
\[\vdots \]
\[C_3 = 1 \times 10^9 \]
Optimization Success over Dipole Interaction Strength

- Increasing two-qubit-phase with increasing interaction strength
- For small T, vibrational purity is lost with increasing two-qubit phase
Conclusions
Conclusions

- Long gate duration can reach arbitrarily high fidelities.
- For short gate durations, the two-qubit phase is at the expense of the vibrational purity.
- If $T < QSL$, not all measures of merit can be fulfilled.
- Time scale for a successful gate is determined by $\max(T_{int}, T_{vib})$.
Acknowledgements

AG Koch

- Christiane Koch
- Daniel Reich
- Mamadou Ndong
- Ruzin Ağanoğlu
- Giulia Gualdi
- Anton Haase
- Martin Berglund

Funding

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged (Grant No. KO2302)