

Michael H. Goerz

DEVCOM Army Research Lab

JuliaCon 2023

UNCLASSIFIED

JuliaQuantumControl

$\leftarrow \rightarrow $	<i>⊗</i> github.com	<u>ت</u> ک				
	Julia QuantumControl Julia Framework for Quantum Optimal Control RX 20 followers & https://juliaquantumcontrol.github.i					
Overview	📮 Repositories 15 🖓 Discussions 🖽 Projects 😚 Packages 🕺 People 3					
README.md	Framework for Quantum Optimal Control.	People				
docs stable	docs dev	Top languages				
The JuliaQua quantum opt	The JuliaQuantumControl organization collects packages implementing a comprehensive collection of methods of open-loop quantum optimal control.					
Quantum op parameters o quantum sta realizing qua involve meas problem by s desired outc	Quantum optimal control theory attempts to steer a quantum system in some desired way by finding optimal control parameters or control fields inside the system Hamiltonian or Liouvillian. Typical control tasks are the preparation of a specific quantum state or the realization of a logical gate in a quantum computer. Thus, quantum control theory is a critical part of realizing quantum technologies, at the lowest level. Numerical methods of <i>open-loop</i> quantum control (methods that do not involve measurement feedback from a physical quantum device) such as Kratov's method and GRAPE address the control optimal-control quantum-computing optimal the dynamics of the system and then iteratively improving the value of a functional that encodes the desired outcome.					

JuliaQuantumControl

ackages
Package Version CI Status Coverage Description
☆ QuantumPropagators.jl (May 2023 v0.6.0) (C CT passing) (C cdecov 90%) Simulate the time evolution of quantum systems (docs)
QuantumControlBase.ji May 2023 v0.8.3 C CL passing Codecov (89%) Shared methods and data structures (docs)
QuantumGradientGenerators.jl May 2023 v0.1.2 CT passing Codecov 0150 Dynamic Gradients for Quantum Control (docs)
Krotov.jl Mar 2023 v0.5.3 C Ct passing Codecov 90% Krotov's method of optimal control (docs)
GRAPE.JI Mar 2023 V0.5.4 C CT passing Codecov 79% Gradient Ascent Pulse Engineering method (docs)
TwoQubitWeylChamber,jl Mar 2023 V0.1.1 C Ct passing Codecov 97% Optimizing two-qubit gates in the Weyl chamber (docs)
QuantumControlTestUtils.jl May 2023 v0.1.5 Ct passing Tools for testing and benchmarking (docs)
☆ QuantumControl.jl May 2023 vol.8.0 CT passing Codecov 78% Pranework for Quantum Dynamics and Control (docs)

Michael Goerz • @goerz@qubit-social.xyz

What is Quantum Control?

Steer a quantum system in some desired way

Quantum Gates

 $\leftarrow \rightarrow \Diamond$

🔗 docs.yaoquantum.org

Quantum Fourier Transformation

The Quantum Fourier Transformation (QFT) circuit is to repeat two kinds of blocks repeatly:

Quantum Fourier Transformation circuit of size 5

The basic building block control phase shift gate is defined as

Two-Transmon Gate

$$egin{aligned} |00
angle
ightarrow \mathsf{CR}_2 & |00
angle \ |01
angle
ightarrow \mathsf{CR}_2 & |01
angle \ |10
angle
ightarrow \mathsf{CR}_2 & |10
angle \ |11
angle
ightarrow \mathsf{CR}_2 & |11
angle \end{aligned}$$

$$\hat{\mathsf{H}} = \hat{\mathsf{H}}_0 + \epsilon(t)\hat{\mathsf{H}}_1$$

microwave field in transmission line

with the same $\epsilon(t)$; acting on logical subspace

Michael Goerz · @goerz@qubit-social.xyz

Controlling the transport of an ion

Bruzewicz et al. npj Quantum Inf 5, 102 (2019)

Tractor atom interferometry

Raithel et al. Quantum Sci. Technol. 8, 014001 (2022)

Find non-adiabatic tractor potential closing interferometric path

Fortran: QDYN library

- Routines for static system analysis (e.g. diagonalization, emission spectra)
- · Propagators for the dynamic equations (Schrödinger equation, master equation) using

Python

Why Julia?

- Flexibility
- Performance
- Expressiveness

QuantumControl.jl examples

Michael Goerz • @goerz@qubit-social.xyz

UNCLASSIFIED

right qubit

 $|3\rangle$

Example: Optimization of Perfectly Entangling Quantum gate

🗇 Two Transmon qubits with a shared transmission line ¶

Goerz et al. EPJ Quantum Tech. 2, 21 (2015) Goerz et al. npj Quantum Information 3, 37 (2017)

Hamiltonian

The energies system energies are on the order of GHz (angular frequency; the factor 2π is implicit), with dynamics on the order of ns

1. const CUr - Or

Michael Goerz · @goerz@qubit-social.xyz


```
u1 _u2 = sparse(u1 * u2), u1_u2 = sparse(u1 * u2)
              # rotating frame: \omega_1. \omega_2 \rightarrow detuning; driving field \mathcal{Q} \in \mathcal{C}
              \tilde{\omega}_1 = \omega_1 - \omega d; \quad \tilde{\omega}_2 = \omega_2 - \omega d
              \hat{H}_{0} = sparse(
                    (\tilde{\omega}_1 - \alpha_1 / 2) * \hat{n}_1 +
                    (\alpha_1 / 2) * \hat{n}_1^2 +
                    (\tilde{\omega}_2 - \alpha_2 / 2) * \hat{n}_2 +
                    (\alpha_2 / 2) * \hat{n}_2^2 +
                    J * (\hat{b}_1^+ - \hat{b}_2^- + \hat{b}_1 - \hat{b}_2^+)
              \hat{H}_1 re = sparse((1 / 2) * (\hat{b}_1 + \hat{b}_1^* + \lambda * \hat{b}_2 + \lambda * \hat{b}_2^*))
              \hat{H}_{1}im = sparse((\hat{I} / 2) * (\hat{b}_{1}^{+} - \hat{b}_{1} + \lambda * \hat{b}_{2}^{+} - \lambda * \hat{b}_{2}))
              return hamiltonian(\hat{H}_{0}, (\hat{H}_{1}re, \Omegare), (\hat{H}_{1}im, \Omegaim))
        end:
                                                                                                                                         Last executed at 2023-07-24 20:13:26 in 11ms
                                                                                                                                                            向个业去早前
        Initial driving field
[ ]: using QuantumControl.Amplitudes: ShapedAmplitude
        using QuantumControl.Shapes: flattop
        function quess_amplitudes(; T=400ns, E<sub>0</sub>=35MHz, dt=0.1ns, t_rise=15ns)
              tlist = collect(range(0, T, step=dt))
              shape(t) = flattop(t, T=T, t_rise=t_rise)
              \Omega re = ShapedAmplitude(t \rightarrow E_{\theta}, tlist; shape)
              \Omegaim = ShapedAmplitude(t -> 0.0, tlist; shape)
              return tlist. Qre. Qim
```

Michael Goerz · @goerz@qubit-social.xyz

Dynamical Generator

\rightarrow Ċ, iuliaguantumcontrol.github.io Ш Glossarv Dynamical generator (Hamiltonian / Liouvillian) for the time evolution of a state, i.e., the right-Generator – hand-side of the equation of motion (up to a factor of i) such that $|\Psi(t+dt) angle=e^{-i\hat{H}dt}|\Psi(t) angle$ in the infinitesimal limit. We use the symbols $G,\hat{H},$ or L, depending on the context (general, Hamiltonian, Liouvillian). Examples for supported forms a Hamiltonian are the following, from the most general case to simplest and most common case of linear controls. $\hat{H} = \overbrace{\hat{H}_0}^{\text{drift term}} + \sum \overbrace{\hat{H}_l(\{\epsilon_{l'}(t)\}, t)}^{\text{control term}}$ (G1) control amplitude $$\begin{split} \hat{H} &= \hat{H}_0 + \sum_l \overbrace{a_l(\{\underline{\epsilon_{l'}}(t)\}, t)}^{a_l(\{\underline{\epsilon_{l'}}(t)\}, t)} \hat{H}_l \\ \hat{H} &= \hat{H}_0 + \sum_l \overbrace{\epsilon_l(t)}^{e_l(t)} \underbrace{\hat{H}_l}_{l} \end{split}$$ (G2) (G3)

Michael Goerz • @goerz@qubit-social.xyz

UNCLASSIFIED

Dynamical Generator

Michael Goerz • @goerz@qubit-social.xyz

Generator Interface

QuantumControl.jl is not a modeling framework!

$\diamond \rightarrow \diamond$		≥ □
	Quantum systems / Particle Particle	٥
QuantumOptics.jl	xmin = -2.	
Search docs	xmax = 4.	
Quantum systems	b_position = PositionBasis(xmin, xmax, N) b_momentum = MomentumBasis(b_position)	
Introduction	v0 - 4 0	
Spin	$x_0 = 1.2$ $p_0 = 0.4$ sigma = 0.2	
Fock space	psi = gaussianstate(b_position, x0, p0, sigma)	
N-Level	<pre>x = position(b_position)</pre>	
Particle	<pre>p = momentum(b_position)</pre>	
StatesOperators	For particles QuantumOptics.jl provides two different choices - either the calculations can be done in real or they can be done in momentum space by using PositionBasis or MomentumBasis respectively. The	space
 Additional functions 	deminition of these two bases types is:	

Michael Goerz · @goerz@qubit-social.xyz

Initial driving field

```
[41]: using OuantumControl.Amplitudes: ShapedAmplitude
      using OuantumControl.Shapes: flattop
      function guess_amplitudes(; T=400ns, E@=35MHz, dt=0.1ns, t_rise=15ns)
          tlist = collect(range(0. T. step=dt))
          shape(t) = flattop(t, T=T, t_rise=t_rise)
          Qre = ShapedAmplitude(t \rightarrow E_{e}, tlist; shape)
          \Omegaim = ShapedAmplitude(t -> 0.0. tlist; shape)
          return tlist. Ore. Oim
      end
      tlist. Qre_quess. Qim_quess = quess_amplitudes();
                                                                                             Last executed at 2023-07-24 20:15:32 in 81ms
 []: include: "includes/plot_complex_pulse.jl")
                                                                                                           回个业古早日
 ]: plot_complex_pulse(tlist, Array(Ωre_guess))
 : H = transmon_hamiltonian(Qre=Qre_guess. Qim=Qim_guess);
      Logical basis
[]: function ket(i::Int64; N=N)
          \Psi = zeros(ComplexF64, N)
          \Psi[i+1] = 1
          return Ψ
      end
```

Michael Goerz • @goerz@qubit-social.xyz

Michael Goerz · @goerz@qubit-social.xyz

Logical basis

```
厄 ↑ ↓ 古 〒 盲
```

```
[]: function ket(i::Int64; N=N)
          \Psi = zeros(ComplexF64, N)
          \Psi[i+1] = 1
          return Ψ
      end
      function ket(indices::Int64...; N=N)
          \Psi = \text{ket}(\text{indices}[1]; N=N)
          for i in indices[2:end]
              \Psi = \Psi \otimes \text{ket}(i; N=N)
          end
          return Ψ
      end
      function ket(label::AbstractString: N=N)
          indices = [parse(Int64, digit) for digit in label]
          return ket(indices...; N=N)
      end;
[]: basis = [ket("00"), ket("01"), ket("10"), ket("11")];
[]: ket("01")
```

Dynamics of the guess field

```
[ ]: using QuantumControl: propagate
```

LUST CACCULCU UT LULU UT LUILUIUU ATT FATO

[47]: ket("01")

[47]

Last executed at 2023-07-24 20:20:11 in 6ms

1	36-el	ler	<pre>nent Vector{ComplexF64}:</pre>
	0.0	+	0.0im
	1.9	+	0.0im
	0.0	÷	0.0im
	0.0	+	0.0im
		1	
	0.0	+	0.0im
	0.0	÷	0.0im
	0.0	+	0.0im

Michael Goerz • @goerz@qubit-social.xyz

0.0 + 0.0im 0.0 + 0.0im

Dynamics of the guess field

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar rac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar rac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

PWC propagator:
$$\hat{U}_n = \exp[-\frac{i}{\hbar}\hat{H}_n dt]$$
 for *n*'th time slice

 \Rightarrow evaluate $\hat{{\sf U}}_n \ket{\Psi}$ (or $\mathcal{U}_n[\hat{
ho}]$) as a polynomial expansion

- \blacksquare Hermitian Hamiltonian \rightarrow Chebychev polynomials
- \blacksquare Non-Hermitian Hamiltonian or Liouvillian \rightarrow Newton polynomials

Michael Goerz • @goerz@qubit-social.xyz

Propagator Interface

0.0 + 0.0im 0.0 + 0.0im

Dynamics of the guess field

Michael Goerz · @goerz@qubit-social.xyz

0.0 + 0.0im 0.0 + 0.0im

Dynamics of the guess field

Michael Goerz · @goerz@qubit-social.xyz

[58]: 0.09071664593816564

Maximization of Gate Concurrence

[59]: using QuantumControl: Objective

objectives = [Objective(; initial_state= Ψ , generator=H) for $\Psi \in$ basis];

Last executed at 2023-07-24 20:22:57 in 40ms

Last executed at 2023-07-24 20:23:36 in 8ms

- [60]: J_T_C = U -> 0.5 * (1 gate_concurrence(U)) + 0.5 * (1 unitarity(U));
- [61]: J_1LC(U_of_t[end])

```
[61]: 0.1567025130426246
```

- []: using QuantumControl.Functionals: gate_functional
 - J_T = gate_functional(J_T_C);

 J_T is now a function of the propagated states $|\Psi_{00}(T)\rangle$, $|\Psi_{01}(T)\rangle$, $|\Psi_{10}(T)\rangle$, $|\Psi_{11}(T)\rangle$.

```
[ ]: using QuantumControl.Functionals: make_gate_chi
```

```
chi = make_gate_chi(J_T_C, objectives)
```

Gradient-based optimal control

• Control parameters: discretized pulse values ϵ_{nl}

• Gradient
$$\nabla J_T = \frac{\partial J_T}{\partial \epsilon_{nl}}$$

• Tune controls in the direction of the gradient

gate concurrence of two-qubit gate $\hat{\boldsymbol{U}}$

1
$$c_1, c_2, c_3 \propto \text{eigvals}\left(\hat{U}\tilde{U}\right); \quad \tilde{U} = (\hat{\sigma}_y \otimes \hat{\sigma}_y) \hat{U} (\hat{\sigma}_y \otimes \hat{\sigma}_y)$$

2 $C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$

Childs et al. Phys. Rev. A 68, 052311 (2003)

Not analytic!

(i-1)

(i-1)

t ra e wit

 $\epsilon_{l-1}^{(l)}$

prp fetene

 $\epsilon_{l2}^{(i-1)}$

 $\epsilon_{l2}^{(i-1)}$

pr p an

tate

 $ilde{\chi}_k(t_{-1}$

 $\Psi_k(t_{-1})$

ra ient

(i-1)

 $\epsilon_{lNT}^{(i-1)}$

ue

 $\tilde{\chi}_k(T)$

 $\Psi_k(T)$

 ϵ_{iNT}

Semi-automatic differentiation

$$\nabla J_{T} = \frac{\partial J_{T}(\{\Psi_{k}(T)\})}{\partial \epsilon_{nl}}$$

$$= 2\operatorname{Re}\left[\sum_{k} \underbrace{\frac{\partial J_{T}}{\partial |\Psi_{k}(T)\rangle}}_{\equiv \langle \chi_{k}|} \underbrace{\frac{\partial |\Psi_{k}(T)\rangle}{\partial \epsilon_{nl}}}_{\equiv \langle \chi_{k}|} \underbrace{\frac{\partial |\Psi_{k}(T)\rangle}{\partial \epsilon_{nl}}}_{\epsilon_{l1}}\right]$$

$$= 2\operatorname{Re}\left[\sum_{k} \frac{\partial}{\partial \epsilon_{nl}} \langle \chi_{k}(T) |\Psi_{k}(T)\rangle\right]$$

$$\underbrace{(2) \text{ ac war}}_{\epsilon_{l1}^{(i-1)}}$$

$$\underbrace{(2) \text{ ac war}}_{\epsilon_{l1}^{(i-1)}}$$

Goerz et al. Quantum 6, 871 (2022)

Yao Community Seminar: https://youtu.be/MQCILD2P89c

[58]: 0.09071664593816564

Maximization of Gate Concurrence

[59]: using QuantumControl: Objective

objectives = [Objective(; initial_state= Ψ , generator=H) for $\Psi \in$ basis];

Last executed at 2023-07-24 20:22:57 in 40ms

[60]: J_T_C = U -> 0.5 * (1 - gate_concurrence(U)) + 0.5 * (1 - unitarity(U));

Last executed at 2023-07-24 20:23:20 in 4ms

[61]: J_T_C(U_of_t[end])

```
[61]: 0.1567025130426246
```

- [62]: using QuantumControl.Functionals: gate_functional
 - J_T = gate_functional(J_T_C);

Last executed at 2023-07-24 20:24:02 in 4ms

Ē

小 ↓ 古 모

 J_T is now a function of the propagated states $|\Psi_{00}(T)\rangle$, $|\Psi_{01}(T)\rangle$, $|\Psi_{10}(T)\rangle$, $|\Psi_{11}(T)\rangle$.

[]: using QuantumControl.Functionals: make_gate_chi

chi = make_gate_chi(J_T_C, objectives)

Î

```
Last executed at 2023-07-24 20:24:02 in 4ms
       J_T is now a function of the propagated states |\Psi_{00}(T)\rangle, |\Psi_{01}(T)\rangle, |\Psi_{10}(T)\rangle, |\Psi_{11}(T)\rangle.
[63]: using OuantumControl.Functionals: make_gate_chi
       chi = make_gate_chi(J_T_C. objectives)
                                                                                                    Last executed at 2023-07-24 20:25:01 in 71ms
[63]: (::OuantumControl.Functionals.var"#zygote_gate_chi!#35"{OuantumControl.Functionals.var"#zygote_gate_chi!#29#36"{Boo
       1, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}, var"#52#53", Vector{Vector{ComplexF64}}, Int64}})
       (generic function with 1 method)
 []: using OuantumControl: ControlProblem
                                                                                                                     1 V 5 7 1
       problem = ControlProblem(;
           objectives. tlist. J_T. chi.
           check_convergence=res -> begin
                    (res.J_T <= 1e-3) &&
                    (res.converged = true) &&
                    (res.message = "Found a perfect entangler")
           end.
           use_threads=true.
       );
 []: using OuantumControl: optimize
       res = optimize(problem; method=:GRAPE)
```

```
., Dase-Failstymbor, Unionty, Haplety, Hameuraplety, Hapletys, Var #02#00, Vector/Vector/ComplexF0455, Into4557
(generic function with 1 method)
```

[64]: using QuantumControl: ControlProblem

Last executed at 2023-07-24 20:25:41 in 44ms

[*]: using QuantumControl: optimize

```
res = optimize(problem; method=:GRAPE)
N/A (28.57s)
```

Execution started at 2023-07-24 20:25:47

iter.	J_T	∇J_T	ΔJ_T	FG(F)	secs
0	1.57e-01	1.42e-01	n/a	1(0)	1.4
1	1.46e-01	3.18e-01	-1.05e-02	1(0)	0.3
2	1.30e-01	2.86e-01	-1.61e-02	1(0)	0.3
3	8.10e-02	2.10e-01	-4.91e-02	2(0)	0.5
4	7.66e-02	3.79e-01	-4.41e-03	1(0)	0.2
5	4.89e-02	1.87e-01	-2.77e-02	1(0)	0.2
6	2.64e-02	2.11e-01	-2.25e-02	1(0)	0.2
7	7.54e-03	1.09e-01	-1.89e-02	1(0)	0.3
8	5.86e-03	1.98e-01	-1.68e-03	1(0)	0.3

Michael Goerz · @goerz@qubit-social.xyz

[65]: using QuantumControl: optimize

res = optimize(problem; method=:GRAPE)

Last executed at 2023-07-24 20:25:52 in 5.02s

	iter.	J_T	∇J_T	ΔJ_T	FG(F)	secs	
	0	1.57e-01	1.42e-01	n/a	1(0)	1.4	
	1	1.46e-01	3.18e-01	-1.05e-02	1(0)	0.3	
	2	1.30e-01	2.86e-01	-1.61e-02	1(0)	0.3	
	3	8.10e-02	2.10e-01	-4.91e-02	2(0)	0.5	
	4	7.66e-02	3.79e-01	-4.41e-03	1(0)	0.2	
	5	4.89e-02	1.87e-01	-2.77e-02	1(0)	0.2	
	6	2.64e-02	2.11e-01	-2.25e-02	1(0)	0.2	
	7	7.54e-03	1.09e-01	-1.89e-02	1(0)	0.3	
	8	5.86e-03	1.98e-01	-1.68e-03	1(0)	0.3	
	9	3.00e-03	4.01e-02	-2.87e-03	1(0)	0.3	
	10	2.71e-03	2.72e-02	-2.88e-04	1(0)	0.3	
	11	2.21e-03	2.82e-02	-5.01e-04	1(0)	0.3	
	12	1.42e-03	2.46e-02	-7.84e-04	1(0)	0.3	
	13	3.24e-04	2.83e-02	-1.10e-03	1(0)	0.3	
[65]:	GRAPE Op	timization	Result				
	- Starte	d at 2023-0	7-24T20:25	:47.270			
	- Number	of objecti	ves: 4				
	- Number of iterations: 13						
	- Number of pure func evals: 0						
	- Number of func/grad evals: 15						
	- Value of functional: 3.24322e-04						
	 Reason for termination: Found a perfect entangler 						
	- Ender at 2023-07-24T20:25:52.287 (5 seconds, 17 millisecond				onds		

[] e ont = res ontimized controls[1] + i + res ontimized controls[2]

Michael Goerz · @goerz@qubit-social.xyz

Performance

Benchmark for Chebychev Propagator – Large Hilbert Space

dense matrices (N = 1000); propagation over 1000 time steps (randomized pulses)

Michael Goerz • @goerz@qubit-social.xyz

Benchmark for Chebychev Propagator – Large Hilbert Space (sparse)

sparse matrices (N = 1000); propagation over 1000 time steps (randomized pulses)

Michael Goerz • @goerz@qubit-social.xyz

Benchmark for Chebychev Propagator – Small Hilbert Space

dense matrices (N = 10); propagation over 1000 time steps (randomized pulses)

Conclusions

$\leftarrow \rightarrow \Diamond$	⊗ github.com			
	Julia GuantumControl Julia Framework for Quantum Optimal Control AR 20 followers \mathscr{O} https://juliaquantumcontrol.github.i			
Overview	🖵 Repositories 15 🖓 Discussions 🗄 Projects 😚 Packages 🕺 People 3			
README.md People A Julia Framework for Quantum Optimal Control.				
docs stable	docs idev	Top languages		
The JuliaQua quantum opt	intumControl organization collects packages implementing a comprehensive collection of methods of open-loop imal control.	Julia Makefile		
Quantum optimal control theory attempts to steer a quantum system in some desired way by finding optimal control parameters or control fields inside the system Hamiltonian or Liouvillian. Typical control tasks are the preparation of a specific quantum state or the realization of a logical gate in a quantum computer. Thus, quantum control theory is a critical part of realizing quantum technologies, at the lowest level. Numerical methods of <i>open-loop</i> quantum control (methods that do not involve measurement feedback from a physical quantum device) such as Krotov's method and GRAPE address the control problem by simulating the dynamics of the system and then iteratively improving the value of a functional that encodes the desired outcome.				

Michael Goerz • @goerz@qubit-social.xyz

Outlook

piecewise-constant pulses \Rightarrow parametrized continuous controls

$$\epsilon(t) = \epsilon(\{u_n\}, t)$$

- Adapt to experimental constraints on controls
- No PWC error: use DifferentialEquations as Propagator
- Specialized quantum control methods: CRAB, GROUP, GOAT, etc.
- But: local traps, controllability issues