

Numerical Methods of Optimal Quantum Control

Michael H. Goerz

DEVCOM Army Research Lab

QuCS Lecture Series, August 24, 2023

UNCLASSIFIED

Numerical Methods of Optimal Quantum Control

What is Quantum Control?

Steer a quantum system in some desired way

Quantum Gates

 $\leftarrow \rightarrow$ \circlearrowright

🔗 docs.yaoquantum.org

Quantum Fourier Transformation

The Quantum Fourier Transformation (QFT) circuit is to repeat two kinds of blocks repeatly:

Quantum Fourier Transformation circuit of size 5

The basic building block control phase shift gate is defined as

Two-Transmon Gate

$$egin{aligned} |00
angle
ightarrow \mathsf{CR}_2 \, |00
angle \ |01
angle
ightarrow \mathsf{CR}_2 \, |01
angle \ |10
angle
ightarrow \mathsf{CR}_2 \, |10
angle \ |11
angle
ightarrow \mathsf{CR}_2 \, |11
angle \ ecter eter ecter ecter ecter ecter eter eter eter eter eter eter ecter eter et$$

$$\hat{H} = \hat{H}_0 + \epsilon(t)\hat{H}_1$$

microwave field in transmission line

with the same $\epsilon(t)$; acting on logical subspace

https://michaelgoerz.net

Controlling photo-chemical reactions

- Kosloff, Rice, et. al. Wavepacket dancing: Achieving chemical selectivity by shaping light pulses. Chem. Phys. 139, 201 (1989).
- Tannor, Jin. Design of femtosecond pulse sequences to control photochemical products, in Mode Selective Chemistry (Springer, 1991)
- Shi, Rabitz. Optimal control of bond selectivity in unimolecular reactions. Comput. Phys. Commun. 63, 71 (1991)
- Judson, Rabitz. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500 (1992).

Tractor atom interferometry

Raithel et al. Quantum Sci. Technol. 8, 014001 (2022)

Find non-adiabatic tractor potential closing interferometric path

Outline

- Formulating the control problem
 - Quantum gates with coupled transmon qubits
 - Unconstrained control problems
- Gradient-ascent (GRAPE)
 - Simulating time dynamics
 - Evaluating gradients
 - Semi-automatic differentiation: evaluate arbitrary functionals
 - Example: Maximizing gate entanglement
- Krotov's method
- QuantumControl.jl: efficiently implementing quantum control
- Parametrized and constrained control problems

Quantum gates with coupled transmon qubits

Majer et al. Nature 449, 443 (2007)

Quantum gates with coupled transmon qubits

Rotating wave approximation . wy = 4.5 gHz $\varepsilon(t) = \Omega(t) \cdot \cos(\omega_{0}t)$ 1 (e'wat + e'wat) way = way = wa $\hat{H} = \tilde{\omega}_{\lambda} \hat{v}_{\lambda} - \frac{\vartheta_{\lambda}}{2} (\hat{v}_{\lambda} - \hat{v}_{\lambda}^{2})$ $+ \tilde{\omega}_2 \tilde{w}_2 - \frac{\alpha_2}{2} \left(\tilde{w}_2 - \tilde{w}_2^2 \right)$ $+ \int \left(\tilde{b}_1^+ \tilde{b}_2 + \tilde{b}_3 \tilde{b}_2^+ \right)$ + 2(1) [b, + b, + 2, b, + 2, b] 2 controlal + : 52 in (4) (5, - b, + 2 b2 - > b2

UNCLASSIFIED

Optimization Functional CNOT Gode (^ · · · 100) -> 100), 100) -> 100) IND > INN , INN - IND $2t = V - \left[\frac{1}{2}\sum_{n=1}^{\infty} \langle -t^{n}(n)| + \frac{1}{4}\frac{1}{4} \rangle \right]_{5}$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

Piecewise constant: $\hat{H}_n = \hat{H}(\{\epsilon_{nl}\})$ with $\epsilon_{nl} = \epsilon_l(t = t_n)$ for n'th time slice

$$J(\{\epsilon_l(t)\}) = J_T(\{|\Psi_k(T)\rangle\}) + \int_0^T \dots dt$$

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

Piecewise constant: $\hat{H}_n = \hat{H}(\{\epsilon_{nl}\})$ with $\epsilon_{nl} = \epsilon_l(t = t_n)$ for n'th time slice

$$J(\{\epsilon_{nl}\}) = J_T(\{|\Psi_k(T)\rangle\}) + \int_0^T \dots dt$$

Gradient
$$\nabla J \equiv \frac{\partial J}{\partial \epsilon_{nl}} \Rightarrow LBFGS$$

Gradient Ascent Pulse Engineering (GRAPE)

How to calculate ∇J for PWC controls

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser. *Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms.* J. Magnet. Res. 172, 296 (2005)

Aside: Wirtinger derivatives — derivatives w.r.t. complex numbers

$$J_{T}(\{\tau_{k}\}) = J_{T}(\{\operatorname{Re}[\tau_{k}], \operatorname{Im}[\tau_{k}]\}); \qquad J_{T} \in \mathbb{R}, \quad \tau_{k} \in \mathbb{C}$$

$$\frac{\partial J_{T}(\{\tau_{k}\})}{\partial \epsilon_{nl}} = \sum_{k} \left(\frac{\partial J_{T}}{\partial \operatorname{Re}[\tau_{k}]} \frac{\partial \operatorname{Re}[\tau_{k}]}{\partial \epsilon_{nl}} + \frac{\partial J_{T}}{\partial \operatorname{Im}[\tau_{k}]} \frac{\partial \operatorname{Im}[\tau_{k}]}{\partial \epsilon_{nl}}\right); \qquad \epsilon_{nl} \in \mathbb{R}$$
Define
$$\frac{\partial J_{T}(\{\tau_{k}\})}{\partial \tau_{k}} \equiv \frac{1}{2} \left(\frac{\partial J_{T}}{\partial \operatorname{Re}[\tau_{k}]} - i\frac{\partial J_{T}}{\partial \operatorname{Im}[\tau_{k}]}\right)$$

$$\frac{\partial J_{T}(\{\tau_{k}\})}{\partial \tau_{k}^{*}} \equiv \frac{1}{2} \left(\frac{\partial J_{T}}{\partial \operatorname{Re}[\tau_{k}]} + i\frac{\partial J_{T}}{\partial \operatorname{Im}[\tau_{k}]}\right) = \left(\frac{\partial J_{T}}{\partial \tau_{k}}\right)^{*}$$

$$\frac{\partial J_{T}(\{\tau_{k}\})}{\partial \epsilon_{nl}} = \sum_{k} \left(\frac{\partial J_{T}}{\partial \tau_{k}}\frac{\partial \tau_{k}}{\partial \epsilon_{nl}} + \frac{\partial J_{T}}{\partial \tau_{k}^{*}}\frac{\partial \tau_{k}}{\partial \epsilon_{nl}}\right) = 2\operatorname{Re}\left[\sum_{k} \frac{\partial J_{T}}{\partial \tau_{k}}\frac{\partial \tau_{k}}{\partial \epsilon_{nl}}\right]$$

UNCLASSIFIED

Cyrediant of State Overlap $|+\psi_{n}(t)\rangle = \hat{U}_{n}$ $\hat{U}_{n}(t) + \hat{U}_{n}(t)$ $\frac{\partial \alpha_{n}}{\partial \varepsilon_{nk}} = \frac{\partial}{\partial \varepsilon_{nk}} \left\langle -t_{n} \left(\omega \right) \right| \left(\hat{u}_{n}^{\dagger} \left(\hat{u}_{n}^{\dagger} - \dots - \hat{u}_{n}^{\dagger} \right) - t_{n} \left(\frac{\partial \sigma}{\partial \tau} \right) \right\rangle$ = $\langle \tau_{n}(G) | \hat{u}_{n}^{\dagger} - \hat{u}_{n-n}^{\dagger} \frac{\partial \hat{u}_{n}^{\dagger}}{\partial \epsilon_{n}} \hat{u}_{n+n}^{\dagger} - \hat{u}_{n}^{\dagger} | \tau_{n}^{\dagger} \hat{u}_{n}^{\dagger} \rangle$ 1xu (tun) <-+ (tm) forward - prop Jon - brail

Piecewise-constant time propagation

$$i\hbarrac{\partial}{\partial t}\ket{\Psi(t)}=\hat{\mathsf{H}}(\{\epsilon_{I}(t)\})\ket{\Psi(t)}$$

$$i\hbar \frac{\partial}{\partial t} \hat{
ho}(t) = \mathcal{L}(\{\epsilon_l(t)\})[\hat{
ho}(t)]$$

PWC propagator:
$$\hat{U}_n = \exp[-\frac{i}{\hbar}\hat{H}_n dt]$$
 for *n*'th time slice

 \Rightarrow evaluate $\hat{{\sf U}}_n \ket{\Psi}$ (or $\mathcal{U}_n[\hat{
ho}]$) as a polynomial expansion

- \blacksquare Hermitian Hamiltonian \rightarrow Chebychev polynomials
- \blacksquare Non-Hermitian Hamiltonian or Liouvillian \rightarrow Newton polynomials

Chebychev Propagation

Chebychev Polynomials

$$P_0(x) = 1;$$
 $P_1(x) = x;$ $P_n(x) = 2xP_n(x) - P_{n-1}(x)$

 $P_n(x)$ are defined for $x \in [-1,1]$

$$\begin{split} |\Psi(t+dt)\rangle &= e^{-i\hat{H}\,dt}\,|\Psi(t)\rangle = \sum_{n} a_{n} \underbrace{P_{n}(-i\hat{H}_{norm})\,|\Psi(t)\rangle}_{\equiv|\Phi_{n}\rangle},\\ \hat{H}_{norm} &= 2\frac{\hat{H}-E_{\min}\,\mathbf{1}}{\Delta}-\mathbf{1}\,, \qquad a_{n} = (2-\delta_{n0})e^{-\frac{i}{\hbar}\left(\frac{\Delta}{2}+E_{\min}\right)\,dt}J_{k}(\alpha)\,,\\ |\Phi_{0}(x)\rangle &= |\Psi(t)\rangle\,; \quad |\Phi_{1}(x)\rangle = -i\hat{H}_{norm}\,|\Phi_{0}\rangle\,; \quad |\Phi_{n}(x)\rangle = -2i\hat{H}_{norm}\,|\Phi_{n-1}\rangle + |\Phi_{n-2}\rangle \end{split}$$

Chebychev Propagation – Pseudocode

	- , / /
Inpu Out _l	t: input vector $\vec{v} \in \mathbb{C}^N$; operator $A \in \mathbb{C}^{N \times N}$; time step dt ; put: Approximation of propagated vector $\vec{w} = e^{-i\hat{A}dt}\vec{v} \in \mathbb{C}^N$
1: p	rocedure CHEBY (\vec{v}, \hat{A}, dt)
2:	$\Delta = \text{spectral radius of } \hat{A}$
3:	$E_{\min} = \min \max eigenvalue \text{ of } \hat{A}$
4:	$[a_0 \dots a_n] = \text{ExpChebyCoeffs}(\Delta, E_{\min}, dt)$
5:	$d = \frac{1}{2}\Delta; \ \beta = d + E_{\min}$
6:	$\vec{v_0} = \vec{v}$
7:	$\vec{w}^{(0)} = a_0 \vec{v}_0$
8:	$ec{v}_1 = \pm rac{\mathrm{i}}{d} \left(\hat{A} ec{v}_0 - eta ec{v}_0 ight)$
9:	$\vec{w}^{(1)} = \vec{w}^{(0)} + a_1 \vec{v}_1$
10:	for $i = 2: n$ do
11:	$ec{v}_{i} = \pm rac{2\mathrm{i}}{d} \left(\hat{A} ec{v}_{i-1} - eta ec{v}_{i-1} ight) + ec{v}_{i-2}$
12:	$\vec{w}^{(i)} = \vec{w}^{(i-1)} + a_i \vec{v}_i$
13:	end for
14:	return $e^{\pm i\beta dt} \vec{w}^{(n)}$
15: e	nd procedure

Algo	rithm 3 CHEBYCHEVCOEFFICIENTS for $f(\pm \hat{A} dt) = e^{\pm i \hat{A} dt}$.
Inpu st	t : spectral radius Δ of \hat{A} ; minimum eigenvalue E_{\min} of \hat{A} ; time ep dt
Outp pi	ut: Array of Chebychev coefficients $[a_0 \dots a_n]$ allowing to approximate $f(\hat{A} dt)$ to pre-defined precision.
1: p	rocedure EXPCHEBYCOEFFS(Δ , E_{\min} , dt)
2:	$\alpha = \frac{1}{2}\Delta dt$
3:	$a_0 = J_0(\alpha)$ \triangleright 0 th order Bessel-function of first kind
4:	for $i = 1$: $n_{\text{max}} \approx 4 \lfloor \alpha \rfloor$ do
0:	$a_i = 2J_i(\alpha)$ $\triangleright i$ th order Bessel-function of first kind
6:	If $ a_i < \text{limit then exit loop with } n = i$
7:	end for
8:	return $[a_0, \ldots a_n]$

Goerz, PhD Thesis, Appendix F
https://michaelgoerz.net

```
https://github.com/JuliaQuantumControl/QuantumPropagators.jl
                                                            Default
130 function cheby!(Ψ, H, dt, wrk; kwargs...)
  2
         E_min = get(kwargs, :E_min, wrk.E_min)
  3
         check_normalization = get(kwargs, :check_normalization, false)
  4
  5
         \Lambda = wrk \Lambda
  6
         \beta::Float64 = (\Delta / 2) + E_min # "normfactor"
  7
         Cassert abs(dt) \approx abs(wrk.dt) "wrk was initialized for dt=(wrk.dt), not dt=dt"
  8
         if dt > 0
  9
             c = -2im / \Delta
         else
 src/chebv.il
         for i = 3:wrk.n_coeffs
             \# v2 = -2i * H_norm * v1 + v0 = c * (H * v1 - \beta * v1) + v0
  2
             mul!(v2, H, v1)
  3
             axpv!(-\beta, v1, v2)
  4
             lmul!(c, v2)
  5
             # v2 += v0
  6
             axpv!(true, v0, v2)
  7
             #Ψ+= a[i] * v2
  8
             axpy!(a[i], v2, \Psi)
  9
             v0. v1. v2 = v1. v2. v0 \# switch w/o copying
         end
         lmul!(exp(-im * \beta * dt), \Psi)
  68% ¶ 161/236: 1) α src/cheby.jl
                                                                                                              {julia<mark>(master</mark>
 /mul!(v2, H, v1)
                                                                                                         [1/1]
(0:nvim)
                                                                                                {08/23 01:30 (ophelia(igc)
```

Gradient of Time Evolution Operator

$$\begin{pmatrix} \frac{\partial \hat{U}_{n}^{\dagger}}{\partial \epsilon_{n1}} | \chi_{k}(t_{n}) \rangle \\ \vdots \\ \frac{\partial \hat{U}_{n}^{\dagger}}{\partial \epsilon_{nL}} | \chi_{k}(t_{n}) \rangle \\ \hat{U}_{n}^{\dagger} | \chi_{k}(t_{n}) \rangle \end{pmatrix} = \exp \begin{bmatrix} -i \begin{pmatrix} \hat{H}_{n}^{\dagger} & 0 & \cdots & 0 & \hat{H}_{n}^{(1)\dagger} \\ 0 & \hat{H}_{n}^{\dagger} & \cdots & 0 & \hat{H}_{n}^{(2)\dagger} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{H}_{n}^{\dagger} & \hat{H}_{n}^{(L)\dagger} \\ 0 & 0 & \cdots & 0 & \hat{H}_{n}^{\dagger} , \end{pmatrix} dt_{n} \end{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ | \chi_{k}(t_{n}) \rangle \end{pmatrix}$$
$$\hat{U}_{n} = \exp[-i\hat{H}_{n}dt_{n}]; \qquad \hat{H}_{n}^{(I)} = \frac{\partial\hat{H}_{n}}{\partial \epsilon_{I}(t)}$$

- Goodwin, Kuprov, J. Chem. Phys. 143, 084113 (2015)

https://github.com/JuliaQuantumControl/QuantumGradientGenerators.jl

UNCLASSIFIED

Optimizing for a Maximally Entangling Gate

Cartan decomposition

$$\hat{U} = \hat{k}_1 \exp\left[\frac{i}{2} \left(\frac{c_1}{\hat{\sigma}_x} \hat{\sigma}_x + \frac{c_2}{\hat{\sigma}_y} \hat{\sigma}_y + \frac{c_3}{\hat{\sigma}_z} \hat{\sigma}_z\right)\right] \hat{k}_2$$

 $\hat{k}_{1,2}$: Single qubit gates; $c_{1,2,3}$: Weyl chamber coordinates

Gate concurrence of two-qubit gate \hat{U}

1
$$c_1, c_2, c_3 \propto \text{eigvals}\left(\hat{U}\tilde{U}\right); \quad \tilde{U} = (\hat{\sigma}_y \otimes \hat{\sigma}_y) \hat{U} (\hat{\sigma}_y \otimes \hat{\sigma}_y)$$

2 $C(\hat{U}) = \max |\sin(c_{1,2,3} \pm c_{3,1,2})|$

Childs et al. Phys. Rev. A 68, 052311 (2003)

Not analytic!

https://michaelgoerz.net

Automatic differentiation (AD)

- Build computational graph for time propagation
- Elementary operations have known derivatives
- Let computer apply chain rule at each node in graph
- Backward pass to accumulate gradient

- Leung et al. Phys. Rev. A 95, 042318 (2017)
- Abdelhafez et al., Phys. Rev. A 99, 052327 (2019)
- Schäfer, et al. Mach. Learn.: Sci. Technol. 1, 035009 (2020)
- Abdelhafez et al. Phys. Rev. A 101, 022321 (2020)

Automatic differentiation (AD)

Fig. 2 in Leung et al. Phys. Rev. A 95, 042318 (2017)

UNCLASSIFIED

Generalized GRAPE scheme

— Goerz et al. Quantum 6, 871 (2022)

Example: Optimization of Perfectly Entangling Quantum gate

🗇 Two Transmon qubits with a shared transmission line ¶

Goerz *et al.* EPJ Quantum Tech. 2, 21 (2015) Goerz *et al.* npj Quantum Information 3, 37 (2017)

Hamiltonian

https://github.com/JuliaQuantumControl/JuliaCon2023-Demo

https://michaelgoerz.net

GRAPE: discretize first, then calculate gradient

GRAPE: discretize first, then calculate gradient

Alternative: variational calculus $\frac{\partial J}{\partial \epsilon(t)}$ — then discretize

- Adjoint method: add TDSE as constraint with Lagrage multiplier $\langle \chi_k |$
 - Shi, Rabitz, J. Chem. Phys. 92, 364 (1990)
 - Zhu, Botina, Rabitz, J. Chem. Phys. 108, 1953 (1998)
- Krotov's method: constructive approach
 - Krotov, Feldman, Eng. Cybern. 21, 123 (1983)
 - Tannor, Kazakov, Orlov. In Time-dependent quantum molecular dynamics (1992)
 - Reich, Ndong, Koch. J. Chem. Phys. Physics 136, 104103 (2012)
 - Goerz et al. SciPost Phys. 7, 080 (2019) [Python implementation]

Krotor's Method J = Jr(E1+(1)) + Sq.(E &(1))dt + Sq.(E1+(1)))dt - given : quess E'e (t) - necessary and confficient conditions for new held E (*) (*) So that J(2 E (2)) = J(2 E (1)) $\frac{\partial g_{a}}{\partial g_{a}} = 2 I_{m} \sum_{k} \langle \chi_{k}(t) | \frac{\partial \varepsilon}{\partial t} | \chi_{k}(t) \rangle$ $q_{\mu} = \frac{\lambda_{\mu}}{c(\mu)} \sum \left(\Delta \epsilon_{\mu}(t) \right)^{2} dt ; \Delta \epsilon_{\mu}(t) = \epsilon_{\mu}^{(n)}(t) - \epsilon_{\mu}^{(n)}(t)$ $= \Delta \varepsilon = \frac{S(t)}{2} - \frac{S}{2} \langle \chi_{t}^{(t)}(t) \rangle = \frac{S}{2} \langle \chi_{t}^{(t)}(t) \rangle$

Krotov Numerical Scheme

GRAPE and Krotov Numerical Scheme Comparison

Goerz et al. Quantum 6, 871 (2022)

QuantumControl.jl

$\leftarrow \rightarrow \diamond$	<i>⊗</i> github.com) () ()			
	Julia Quantum Control Julia Framework for Quantum Optimal Control At 20 followers \mathscr{O} https://juliaquantumcontrol.github.i				
Overview	🛱 Repositories 15 🖓 Discussions 🗄 Projects 🕎 Packages 🔗 People 3				
README.md	Framework for Quantum Optimal Control.	People			
docs stable	docs (dev	Top languages			
The JuliaQuantumControl organization collects packages implementing a comprehensive collection of methods of open-loop quantum optimal control.		● Julia ● Makefile			
Quantum optimal control theory attempts to steer a quantum system in some desired way by finding optimal control parameters or control fields inside the system Hamiltonian or Liouvillian. Typical control tasks are the preparation of a specific quantum state or the realization of a logical gate in a quantum computer. Thus, quantum control theory is a critical part of realizing quantum technologies, at the lowest level. Numerical methods of <i>open-loop</i> quantum control (methods that do not involve measurement feedback from a physical quantum device) such as Krotov's method and GRAPE address the control problem by simulating the dynamics of the system and then iteratively improving the value of a functional that encodes the desired outcome.		Most used topics julia quantum grape optimal-control quantum-computing			

Dynamical Generator

Generator – Dynamical generator (Hamiltonian / Liouvillian) for the time evolution of a state, i.e., the righthand-side of the equation of motion (up to a factor of *i*) such that $|\Psi(t + dt)\rangle = e^{-i\hat{H}dt}|\Psi(t)\rangle$ in the infinitesimal limit. We use the symbols G, \hat{H} , or L, depending on the context (general, Hamiltonian, Liouvillian). Examples for supported forms a Hamiltonian are the following, from the most general case to simplest and most common case of linear controls,

$$\hat{H} = \hat{H}_{0} + \sum_{l} \underbrace{\hat{H}_{l}(\{\epsilon_{l'}(t)\}, t)}_{\text{control term}}$$
(G1)

$$\hat{H} = \hat{H}_{0} + \sum_{l} \underbrace{\hat{a}_{l}(\{\epsilon_{l'}(t)\}, t)}_{\text{control amplitude}} \hat{H}_{l}$$
(G2)

$$\hat{H} = \hat{H}_{0} + \sum_{l} \underbrace{\epsilon_{l}(t)}_{\text{control function}} \hat{H}_{l}$$
(G3)

https://michaelgoerz.net

Dynamical Generator

Generator – Dynamical generator (Hamiltonian / Liouvillian) for the time evolution of a state, i.e., the righthand-side of the equation of motion (up to a factor of *i*) such that $|\Psi(t + dt)\rangle = e^{-i\hat{H}dt}|\Psi(t)\rangle$ in the infinitesimal limit. We use the symbols G, \hat{H} , or L, depending on the context (general, Hamiltonian, Liouvillian). Examples for supported forms a Hamiltonian are the following, from the most general case to simplest and most common case of linear controls,

https://michaelgoerz.net

Generator Interface

Propagator Interface

$\leftrightarrow \rightarrow \diamond$	𝔗 juliaquantumcontrol.github.io			\$	כ
Overview		0	٥	≡	
	The Propagator interface				
	As a lower-level interface than propagate, the QuantumPropagators package defines an interface for "propagator" objects. These are initialized via init_prop as, e.g.,				
	using QuantumPropagators: init_prop				
	propagator = init_prop(Ψ_0 , H, tlist)				
	The propagator is a propagation-method-dependent object with the interface described by AbstractPropagator.				
	The prop_step! function can then be used to advance the propagator:				U
	<pre>using QuantumPropagators: prop_step!</pre>	lli -			
	Ψ = prop_step!(propagator) # single step				

Parametrized Control Fields

piecewise-constant pulses \Rightarrow parametrized continuous controls

$$\epsilon(t) = \epsilon(\{u_n\}, t)$$

E.g. CRAB – Chopped Random (spectral) Basis

$$\epsilon(t) = \sum_{i=1}^{10} \left(\frac{a_n}{a_n} \cos(\omega_n t) + \frac{b_n}{a_n} \sin(\omega_n t) \right)$$

- Caneva et al. Phys. Rev. A 84, 022326 (2011)

Gradient-free optimization

e.g. Nelder-Mead (simplex), genetic algorithms...

Gradients of parametrized pulses

$$\begin{pmatrix} \frac{\partial \hat{U}}{\partial u_{1}} | \Psi_{k} \rangle \\ \vdots \\ \frac{\partial \hat{U}}{\partial u_{N}} | \Psi_{k} \rangle \\ \hat{U} | \Psi_{k} \rangle \end{pmatrix} = \exp \begin{bmatrix} -i\mathcal{T} \int_{0}^{\mathcal{T}} \begin{pmatrix} \hat{H}(t) & 0 & \cdots & 0 & \hat{H}^{(1)}(t) \\ 0 & \hat{H}(t) & \cdots & 0 & \hat{H}^{(2)}(t) \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & \hat{H}(t) & \hat{H}^{(N)}(t) \\ 0 & 0 & \cdots & 0 & \hat{H}(t) \end{pmatrix} dt \end{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ |\Psi_{k} \rangle \end{pmatrix}$$

with
$$\hat{H}^{(n)}(t) = \frac{\partial \hat{H}(t)}{\partial u_n}$$

— "GOAT": Machnes et al. Phys. Rev. Lett. 120, 150401 (2018)

Open Quantum Systems

Lindblad equation:

$$\begin{split} \frac{d}{dt}\hat{\rho}(t) &= -i\left[\hat{\mathsf{H}},\hat{\rho}(t)\right] + \mathcal{L}_{D}(\hat{\rho}(t)) \\ &= -i\left[\hat{\mathsf{H}},\hat{\rho}(t)\right] + \sum_{k}\left(\hat{\mathsf{A}}_{k}\hat{\rho}\hat{\mathsf{A}}_{k}^{\dagger} - \frac{1}{2}\hat{\mathsf{A}}_{k}^{\dagger}\hat{\mathsf{A}}_{k}\hat{\rho} - \frac{1}{2}\hat{\rho}\hat{\mathsf{A}}_{k}^{\dagger}\hat{\mathsf{A}}_{k}\right) \end{split}$$

Vectorization rule:

$$\operatorname{vec}\left(\hat{\mathsf{A}}\hat{
ho}\hat{\mathsf{B}}
ight) = \left(\hat{B}^{\,\mathcal{T}}\otimes\hat{A}
ight)ec{
ho}$$

Matrix representation of Lindbladian:

$$\hat{L} = -i(\mathbf{1} \otimes \hat{H}) + i(\hat{H}^{T} \otimes \mathbf{1}) + \sum_{k} \left[(\hat{A}_{k}^{\dagger})^{T} \otimes \hat{A}_{k} - \frac{1}{2} \left(\mathbf{1} \otimes \hat{A}_{k}^{\dagger} \hat{A}_{k} \right) - \frac{1}{2} \left((\hat{A}_{k}^{\dagger} \hat{A}_{k})^{T} \otimes \mathbf{1} \right) \right]$$

— Goerz et. al. arXiv:1312.0111v2 (2021), Appendix B