Two Transmon Qubits Coupled via Cavity Bus

For each point \((\omega_1, \omega_2) \): find pulse to minimize entanglement (two-qubit gate) and pulse to implement local gate \(\in \text{SU}(2) \otimes \text{SU}(2) \), using multistage optimization scheme [5].

Parameters
- \(\omega_1 = 6.0 \text{ GHz} \)
- \(\omega_2 = 5.8 \div 7.5 \text{ GHz (var)} \)
- \(\delta_1 = 4.5 \div 11.0 \text{ GHz (var)} \)
- \(\gamma_1 = 290 \text{ MHz} \)
- \(\gamma_2 = 310 \text{ MHz} \)
- \(q = 70 \text{ MHz} \)

\[
\hat{\mathbf{H}} = \frac{\hbar}{2} \sum_{j=1}^{2} \left[\omega_j \hat{b}_j + \frac{g_j}{2} \hat{a} \cdot \hat{b}_j + \frac{g_j}{2} \hat{b} \cdot \hat{a} \right] + \frac{\alpha_j}{2} \hat{b}^\dagger \hat{b} + \frac{\alpha_j}{2} \hat{a}^\dagger \hat{a}
\]

(1)

with \(\hat{b} \) and \(\hat{a} \): cavity harmonic oscillators, \(g_j \): qubit anharmonic oscillators, \(g \): qubit-cavity coupling, and \(\alpha_j \): cavity coupling to control field.

\[
e(\tau) = E_0 R(t) \cos(\omega_1 \tau), \quad R(t) = \text{Blackman shape}
\]

(2)

Include spontaneous decay: lifetime of cavity \(\tau_c = 3.2 \mu s \) [4]; lifetime of qubit \(\tau_q = 13.3 \mu s \) [2].

Method

Goal: For each point \((\omega_1, \omega_2) \): random frequencies \(\omega_2 \) scan amplitude \(E_0 \in [10 \div 900] \text{ MHz} \).

1. **Random Search**
 - For each point \((\omega_1, \omega_2) \): random frequencies \(\omega_2 \) scan amplitude \(E_0 \in [10 \div 900] \text{ MHz} \).

2. **Gradient-Free Optimization of Analytical Pulse Parameters**
 - For best values of step 1, use Nelder-Mead downhill simplex to minimize Eq. (3) for free pulse parameters \(E_0, \omega_2 \).

3. **Gradient-Based Optimization (Krotov’s method) for Fine-Tuning**
 - Use Krotov’s method [7] to continue optimization of (1) for arbitrary perfect entanglers [8] and arbitrary local gate \(\in \text{SU}(2) \otimes \text{SU}(2) \), based on Cartesian decomposition [10].

Optimization Success (best obtained values)

- Expected error due to dissipation:
 - \(\epsilon_{\text{PE}} = 1 - \epsilon_{\text{PE}} \frac{\Omega_{\text{Q}}}{\Omega} \)
 - with \(\Omega_{\text{Q}} = \Omega \frac{Q_{\text{Q}}}{Q} = \frac{Q_{\text{Q}}}{Q} \cdot \Omega \).

Conclusions & Outlook

- Found parameters allowing implementation perfect entangler and local gate, for gate durations down to 10 ns, beating decoherence with gate error \(< 1 \times 10^{-3} \).
- Obtained gates are limited only by dissipation.
- Fastest gates can be achieved in previously under-explored (non-dissipative) parameter regime with \(\epsilon_{\text{PE}} \approx \omega_c \).
- Using gate durations allow wide range of two-qubit gates, for short gate durations, the dissipation is most efficient.
- More complicated pulse shapes than Eq. (2) have been tried, but provide no significant improvement. Outlook: implement complete set of universal quantum gates by directly optimizing single-qubit Hadamard and phase gates.
- Analyze characteristics of optimal pulses and dynamics. What gate mechanisms are used?